nlpblogs commited on
Commit
d5add9d
·
verified ·
1 Parent(s): 9552e01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -12,12 +12,12 @@ from comet_ml import Experiment
12
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
13
 
14
  # --- App Header and Info ---
15
- st.subheader("8-Named Entity Recognition Web App", divider="red")
16
  st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
17
 
18
- expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**")
19
  expander.write('''
20
- **Named Entities:** This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
21
 
22
  **How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
23
 
@@ -34,8 +34,8 @@ expander.write('''
34
  with st.sidebar:
35
  container = st.container(border=True)
36
  container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
37
- st.subheader("Related NLP Web Apps", divider="red")
38
- st.link_button("English HTML Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/english-html-entity-finder/", type="primary")
39
 
40
  # --- Comet ML Setup ---
41
  COMET_API_KEY = os.environ.get("COMET_API_KEY")
 
12
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
13
 
14
  # --- App Header and Info ---
15
+ st.subheader("Free NER Web App", divider="red")
16
  st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
17
 
18
+ expander = st.expander("**Important notes on the Free NER Web App**")
19
  expander.write('''
20
+ **Named Entities:** This Free NER Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
21
 
22
  **How to Use:** Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
23
 
 
34
  with st.sidebar:
35
  container = st.container(border=True)
36
  container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
37
+ st.subheader("Related NER Web Apps", divider="red")
38
+ st.link_button("Scandinavian JSON Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/", type="primary")
39
 
40
  # --- Comet ML Setup ---
41
  COMET_API_KEY = os.environ.get("COMET_API_KEY")