File size: 8,931 Bytes
3673798
 
 
 
 
 
 
 
 
a894fcd
 
3673798
a894fcd
 
3673798
4b9f242
3673798
 
4b9f242
a894fcd
3673798
4b9f242
3673798
 
4b9f242
 
3673798
4b9f242
3673798
 
4b9f242
3673798
a894fcd
3673798
 
 
a894fcd
 
 
 
 
 
da84618
a894fcd
 
3673798
 
 
 
 
a894fcd
3673798
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5868e
3673798
 
 
 
 
 
 
4b9f242
3673798
 
 
 
 
 
 
 
 
a894fcd
3673798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5868e
a894fcd
 
 
 
 
 
 
a557d1a
a894fcd
 
 
 
 
 
 
 
 
 
 
 
3673798
 
 
 
 
 
 
 
 
 
 
 
cfbd3ec
 
3673798
 
cb5868e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a894fcd
3673798
 
 
 
 
 
a894fcd
3673798
 
 
 
 
4b9f242
 
 
 
 
 
3673798
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import json
import plotly.express as px

st.subheader("AI CSV and XLSX Data Analyzer", divider="blue")
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")

expander = st.expander("**Important notes on the AI CSV and XLSX Data Analyzer**")
expander.write('''
    
    **Supported File Formats:**
    This app accepts files in .csv and .xlsx formats.
    
    **How to Use:**
    Upload your file first. Select two different columns from your data to visualize in a tree map. Then, type your question into the text area provided and click the 'Retrieve your answer' button.
    
    **Usage Limits:**
    You can ask up to 5 questions. 
    
    **Subscription Management:**
    This app offers a one-day free trial, followed by a one-day subscription, expiring after 24 hours. If you are interested in building your own AI CSV and XLSX Data Analyzer, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app in five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization:**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors:**
    The app may display an error message if your file has errors or date values.
    
    For any errors or inquiries, please contact us at [email protected]
    
''')


with st.sidebar:
    container = st.container(border=True)
    container.write("**Question-Answering (QA)** is the task of retrieving the answer to a question from a given text (knowledge base), which is used as context.")
    st.subheader("Related NLP Web Apps", divider = "blue")
    st.link_button("AI Google Sheet Data Analyzer", "https://nlpblogs.com/shop/table-question-answering-qa/google-sheet-qa-demo-app/", type = "primary")
   

if 'question_attempts' not in st.session_state:
    st.session_state['question_attempts'] = 0

max_attempts = 5


upload_file = st.file_uploader("Upload your file. Accepted file formats include: .csv, .xlsx", type=['csv', 'xlsx'])


if upload_file is not None:
    file_extension = upload_file.name.split('.')[-1].lower()
    if file_extension == 'csv':
        try:
            df = pd.read_csv(upload_file, na_filter=False)
            if df.isnull().values.any():
                st.error("Error: The CSV file contains missing values.")
                st.stop()
            else:
                new_columns = [f'column_{i+1}' for i in range(len(df.columns))]
                df.columns = new_columns
                
                all_columns = df.columns.tolist()
                st.subheader("Select columns for the Tree Map", divider="blue")
                parent_column = st.selectbox("Select the parent column:", all_columns)
                value_column = st.selectbox("Select the value column:", all_columns)
                
            if parent_column and value_column:
                if parent_column == value_column:
                    st.warning("Warning: You have selected the same column for both the parent and value column. Please select two different columns from your data.")
                elif parent_column and value_column:
                    path_columns = [px.Constant("all"), parent_column, value_column]
                    fig = px.treemap(df,
                         path=path_columns)

                    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                    st.subheader("Tree map", divider="red")
                    st.plotly_chart(fig)
                    
                    
                    st.session_state.df = df  
        except pd.errors.ParserError:
            st.error("Error: The CSV file is not readable or is incorrectly formatted.")
            st.stop()
        except UnicodeDecodeError:
            st.error("Error: The CSV file could not be decoded.")
            st.stop()
        except Exception as e:
            st.error(f"An unexpected error occurred while reading CSV: {e}")
            st.stop()
    elif file_extension == 'xlsx':
        try:
            df = pd.read_excel(upload_file, na_filter=False)
            
            if df.isnull().values.any():
                st.error("Error: The Excel file contains missing values.")
                st.stop()
            else:
                new_columns = [f'column_{i+1}' for i in range(len(df.columns))]
                df.columns = new_columns
                
                all_columns = df.columns.tolist()
                st.subheader("Select columns for the Tree Map", divider="blue")
                parent_column = st.selectbox("Select the parent column:", all_columns)
                value_column = st.selectbox("Select the value column:", all_columns)
                
            if parent_column and value_column:
                if parent_column == value_column:
                    st.warning("Warning: You have selected the same column for both the parent and value column. Please select two different columns from your data.")
                elif parent_column and value_column:
                    path_columns = [px.Constant("all"), parent_column, value_column]
                    fig = px.treemap(df,
                         path=path_columns)

                    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                    st.subheader("Tree map", divider="red")
                    st.plotly_chart(fig)
                    
                    
                    st.session_state.df = df  
                         
        except ValueError:
            st.error("Error: The Excel file is not readable or is incorrectly formatted.")
            st.stop()
        except Exception as e:
            st.error(f"An unexpected error occurred while reading Excel: {e}")
            st.stop()
    else:
        st.warning("Unsupported file type.")
        st.stop()




 
st.divider()

if upload_file is not None:
    file_extension = upload_file.name.split('.')[-1].lower()
    if file_extension == 'csv':
        try:
            df = pd.read_csv(upload_file, na_filter=False)
            if df.isnull().values.any():
                st.error("Error: The CSV file contains missing values.")
                st.stop()
            else:
                st.dataframe(df, key="csv_dataframe")
                st.write("_number of rows_", df.shape[0])
                st.write("_number of columns_", df.shape[1])
                st.session_state.df = df  
        except pd.errors.ParserError:
            st.error("Error: The CSV file is not readable or is incorrectly formatted.")
            st.stop()
        except UnicodeDecodeError:
            st.error("Error: The CSV file could not be decoded.")
            st.stop()
        except Exception as e:
            st.error(f"An unexpected error occurred while reading CSV: {e}")
            st.stop()
    elif file_extension == 'xlsx':
        try:
            df = pd.read_excel(upload_file, na_filter=False)
            
            if df.isnull().values.any():
                st.error("Error: The Excel file contains missing values.")
                st.stop()
            else:
                st.dataframe(df, key="excel_dataframe")
                st.write("_number of rows_", df.shape[0])
                st.write("_number of columns_", df.shape[1])
                st.session_state.df = df  
        except ValueError:
            st.error("Error: The Excel file is not readable or is incorrectly formatted.")
            st.stop()
        except Exception as e:
            st.error(f"An unexpected error occurred while reading Excel: {e}")
            st.stop()
    else:
        st.warning("Unsupported file type.")
        st.stop()

def clear_question():
    st.session_state["question"] = ""

question = st.text_input("Type your question here and then press **Retrieve your answer**:", key="question")
st.button("Clear question", on_click=clear_question)


if st.button("Retrieve your answer"):
    if st.session_state['question_attempts'] >= max_attempts:
        st.error(f"You have asked {max_attempts} questions. Maximum question attempts reached.")
        st.stop()
    st.session_state['question_attempts'] += 1
    
    with st.spinner("Wait for it...", show_time=True):
        time.sleep(5)          
        if df is not None:
            tqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq")
            st.write(tqa(table=df, query=question)['answer'])

st.divider()
st.write(f"Number of questions asked: {st.session_state['question_attempts']}/{max_attempts}")