File size: 941 Bytes
5bea701
 
5a5c182
c40c6c3
5bea701
aa023ef
1609aee
aa023ef
 
4ba60c1
aa023ef
 
 
 
db8c854
4fd28bb
f19e027
aa023ef
c40c6c3
 
4ed751b
 
 
 
 
c40c6c3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer

uploaded_files = st.file_uploader(
    "Choose a CSV file", accept_multiple_files=True
)
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file) # read your PDF file
    # extract the text data from your PDF file after looping through its pages with the .extract_text() method
    text_data= ""
    for page in pdf_reader.pages: # for loop method
        text_data+= page.extract_text()

    
    data = pd.Series(text_data, index = ["Resume"])
    
    st.dataframe(data) # view the text data

    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.metrics.pairwise import cosine_similarity
    vec = TfidfVectorizer()
    tf_idf = vec.fit_transform(data["Resume"])
    st.dataframe(pd.DataFrame(tf_idf.toarray(), columns=vec.get_feature_names_out()))