File size: 780 Bytes
5bea701 5a5c182 c40c6c3 040362f 5bea701 aa023ef 1609aee aa023ef 4ba60c1 aa023ef db8c854 4fd28bb 5bd0747 a582cba 04acd31 c40c6c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
uploaded_files = st.file_uploader(
"Choose a CSV file", accept_multiple_files=True
)
for uploaded_file in uploaded_files:
pdf_reader = PdfReader(uploaded_file) # read your PDF file
# extract the text data from your PDF file after looping through its pages with the .extract_text() method
text_data= ""
for page in pdf_reader.pages: # for loop method
text_data+= page.extract_text()
data = pd.Series(text_data, index = ["Resume"])
st.dataframe(data) # view the text data
|