nlpblogs commited on
Commit
88d066d
·
verified ·
1 Parent(s): 4b3e5c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -14
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  from PyPDF2 import PdfReader
3
  import pandas as pd
4
  from sklearn.feature_extraction.text import TfidfVectorizer
5
- from sklearn.feature_extraction.text import TfidfVectorizer
6
  from sklearn.metrics.pairwise import cosine_similarity
7
 
8
  import streamlit as st
@@ -10,6 +10,8 @@ from PyPDF2 import PdfReader
10
  import pandas as pd
11
  from sklearn.feature_extraction.text import TfidfVectorizer
12
  from sklearn.metrics.pairwise import cosine_similarity
 
 
13
 
14
  uploaded_files = st.file_uploader(
15
  "Choose a PDF file(s) and job description as pdf", accept_multiple_files=True, type = "pdf"
@@ -24,6 +26,9 @@ if uploaded_files:
24
  text_data = ""
25
  for page in pdf_reader.pages:
26
  text_data += page.extract_text()
 
 
 
27
 
28
  column_name = f"Candidate profile {i + 1}"
29
  resumes = pd.Series({column_name: text_data})
@@ -35,19 +40,7 @@ if uploaded_files:
35
  st.error(f"Error processing file {uploaded_file.name}: {e}")
36
 
37
 
38
- if all_resumes:
39
- # Initialize the TF-IDF vectorizer
40
- vectorizer = TfidfVectorizer()
41
 
42
- # Fit and transform the text data
43
- tfidf_matrix = vectorizer.fit_transform(all_resumes)
44
-
45
- # Calculate the cosine similarity matrix
46
- cosine_sim = cosine_similarity(tfidf_matrix)
47
-
48
- st.subheader("Cosine Similarity Matrix")
49
- st.dataframe(cosine_sim)
50
- elif uploaded_files:
51
- st.info("Please upload at least two PDF files to calculate cosine similarity.")
52
 
53
 
 
2
  from PyPDF2 import PdfReader
3
  import pandas as pd
4
  from sklearn.feature_extraction.text import TfidfVectorizer
5
+
6
  from sklearn.metrics.pairwise import cosine_similarity
7
 
8
  import streamlit as st
 
10
  import pandas as pd
11
  from sklearn.feature_extraction.text import TfidfVectorizer
12
  from sklearn.metrics.pairwise import cosine_similarity
13
+ from gliner import GLiNER
14
+
15
 
16
  uploaded_files = st.file_uploader(
17
  "Choose a PDF file(s) and job description as pdf", accept_multiple_files=True, type = "pdf"
 
26
  text_data = ""
27
  for page in pdf_reader.pages:
28
  text_data += page.extract_text()
29
+ model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
30
+ labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
31
+ entities = model.predict_entities(text_data, labels)
32
 
33
  column_name = f"Candidate profile {i + 1}"
34
  resumes = pd.Series({column_name: text_data})
 
40
  st.error(f"Error processing file {uploaded_file.name}: {e}")
41
 
42
 
 
 
 
43
 
44
+
 
 
 
 
 
 
 
 
 
45
 
46