Update app.py
Browse files
app.py
CHANGED
@@ -98,7 +98,7 @@ if st.session_state['upload_count'] < max_attempts:
|
|
98 |
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
99 |
values='score', color='label')
|
100 |
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
101 |
-
st.plotly_chart(fig1
|
102 |
vectorizer = TfidfVectorizer()
|
103 |
tfidf_matrix = vectorizer.fit_transform(result)
|
104 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
@@ -116,7 +116,7 @@ if st.session_state['upload_count'] < max_attempts:
|
|
116 |
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
117 |
x=['text1', 'Jon Description'],
|
118 |
y=['text1', 'Job Description'])
|
119 |
-
st.plotly_chart(fig2
|
120 |
|
121 |
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
122 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
@@ -164,7 +164,7 @@ if st.session_state['upload_count'] < max_attempts:
|
|
164 |
fig3 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
165 |
values='score', color='label')
|
166 |
fig3.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
167 |
-
st.plotly_chart(fig3
|
168 |
vectorizer = TfidfVectorizer()
|
169 |
tfidf_matrix = vectorizer.fit_transform(result)
|
170 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
@@ -182,7 +182,7 @@ if st.session_state['upload_count'] < max_attempts:
|
|
182 |
fig4 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
183 |
x=['text1', 'Jon Description'],
|
184 |
y=['text1', 'Job Description'])
|
185 |
-
st.plotly_chart(fig4
|
186 |
|
187 |
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
188 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
|
|
98 |
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
99 |
values='score', color='label')
|
100 |
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
101 |
+
st.plotly_chart(fig1)
|
102 |
vectorizer = TfidfVectorizer()
|
103 |
tfidf_matrix = vectorizer.fit_transform(result)
|
104 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
|
|
116 |
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
117 |
x=['text1', 'Jon Description'],
|
118 |
y=['text1', 'Job Description'])
|
119 |
+
st.plotly_chart(fig2)
|
120 |
|
121 |
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
122 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
|
|
164 |
fig3 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
165 |
values='score', color='label')
|
166 |
fig3.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
167 |
+
st.plotly_chart(fig3)
|
168 |
vectorizer = TfidfVectorizer()
|
169 |
tfidf_matrix = vectorizer.fit_transform(result)
|
170 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
|
|
182 |
fig4 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
183 |
x=['text1', 'Jon Description'],
|
184 |
y=['text1', 'Job Description'])
|
185 |
+
st.plotly_chart(fig4)
|
186 |
|
187 |
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
188 |
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|