File size: 3,219 Bytes
e6f3be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
import time
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-mpnet-base-v2")


st.title("AI Resume Analysis based on Keywords App")
st.divider()

job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")

if 'applicant_data' not in st.session_state:
    st.session_state['applicant_data'] = {}

max_attempts = 1

for i in range(1, 51):  # Looping for 2 applicants
    st.subheader(f"Applicant {i} Resume", divider="green")
    applicant_key = f"applicant_{i}"
    upload_key = f"candidate_{i}"

    if applicant_key not in st.session_state['applicant_data']:
        st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}

    if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
        uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)

        if uploaded_file:
            st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
            st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag

        if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
            pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
            text_data = ""
            for page in pdf_reader.pages:
                text_data += page.extract_text()

            with st.expander(f"See Applicant's {i} resume"):
                st.write(text_data)

            data = pd.Series(text_data, name='Text')
            result = pd.concat([job, data])

            
            embeddings = model.encode([result])
            similarities = model.similarity(embeddings, embeddings)
            
            
           
            for j, similarity_score in enumerate(similarities[0][1:]):
                with st.popover(f"See Result for Applicant {i}"):
                    st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
                    st.info(
                        f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
            st.session_state['applicant_data'][applicant_key]['analysis_done'] = True

    else:
        st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
        if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
            st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")