File size: 3,219 Bytes
e6f3be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
import time
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("all-mpnet-base-v2")
st.title("AI Resume Analysis based on Keywords App")
st.divider()
job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")
if 'applicant_data' not in st.session_state:
st.session_state['applicant_data'] = {}
max_attempts = 1
for i in range(1, 51): # Looping for 2 applicants
st.subheader(f"Applicant {i} Resume", divider="green")
applicant_key = f"applicant_{i}"
upload_key = f"candidate_{i}"
if applicant_key not in st.session_state['applicant_data']:
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
if uploaded_file:
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
with st.expander(f"See Applicant's {i} resume"):
st.write(text_data)
data = pd.Series(text_data, name='Text')
result = pd.concat([job, data])
embeddings = model.encode([result])
similarities = model.similarity(embeddings, embeddings)
for j, similarity_score in enumerate(similarities[0][1:]):
with st.popover(f"See Result for Applicant {i}"):
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
st.info(
f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
st.session_state['applicant_data'][applicant_key]['analysis_done'] = True
else:
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
|