Update app.py
Browse files
app.py
CHANGED
@@ -8,15 +8,28 @@ from nltk.corpus import stopwords
|
|
8 |
nltk.download('stopwords')
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model = SentenceTransformer("all-mpnet-base-v2")
|
12 |
st.title("AI Resume Analysis based on Keywords App")
|
13 |
st.divider()
|
14 |
-
|
15 |
-
|
16 |
-
for
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
if 'applicant_data' not in st.session_state:
|
22 |
st.session_state['applicant_data'] = {}
|
@@ -36,24 +49,23 @@ for i in range(1, 51): # Looping for 50 applicants
|
|
36 |
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
|
37 |
try:
|
38 |
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
|
39 |
-
|
40 |
for page in pdf_reader.pages:
|
41 |
-
|
42 |
with st.expander(f"See Applicant's {i} resume"):
|
43 |
-
|
44 |
-
for sentence in text_data:
|
45 |
-
text_tokens.extend(word_tokenize(text_data))
|
46 |
-
text_data = [word for word in text_tokens if not word in stopwords.words()]
|
47 |
-
st.write(text_data)
|
48 |
-
|
49 |
-
|
50 |
-
# Encode the job description and resume text separately
|
51 |
-
job_embedding = model.encode([job_desc])
|
52 |
-
resume_embedding = model.encode([text_data])
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Calculate the cosine similarity between the two embeddings
|
55 |
similarity_score = model.similarity(job_embedding, resume_embedding)[0][0]
|
56 |
-
|
57 |
with st.popover(f"See Result for Applicant {i}"):
|
58 |
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
|
59 |
st.info(
|
@@ -64,7 +76,4 @@ for i in range(1, 51): # Looping for 50 applicants
|
|
64 |
else:
|
65 |
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
|
66 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
|
67 |
-
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
8 |
nltk.download('stopwords')
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
import streamlit as st
|
13 |
+
import pandas as pd
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
+
import nltk
|
16 |
+
from nltk.corpus import stopwords
|
17 |
+
from nltk.tokenize import word_tokenize
|
18 |
+
|
19 |
+
nltk.download('punkt')
|
20 |
+
nltk.download('stopwords')
|
21 |
+
stop_words = set(stopwords.words('english'))
|
22 |
+
|
23 |
model = SentenceTransformer("all-mpnet-base-v2")
|
24 |
st.title("AI Resume Analysis based on Keywords App")
|
25 |
st.divider()
|
26 |
+
job_desc_raw = st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc")
|
27 |
+
|
28 |
+
# Process job description for stop words
|
29 |
+
job_desc_tokens = word_tokenize(job_desc_raw.lower())
|
30 |
+
job_desc_filtered = [word for word in job_desc_tokens if not word in stop_words]
|
31 |
+
job_desc_processed = " ".join(job_desc_filtered)
|
32 |
+
st.write("Processed Job Description:", job_desc_processed)
|
33 |
|
34 |
if 'applicant_data' not in st.session_state:
|
35 |
st.session_state['applicant_data'] = {}
|
|
|
49 |
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
|
50 |
try:
|
51 |
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
|
52 |
+
text_data_raw = ""
|
53 |
for page in pdf_reader.pages:
|
54 |
+
text_data_raw += page.extract_text()
|
55 |
with st.expander(f"See Applicant's {i} resume"):
|
56 |
+
st.write(text_data_raw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Process resume text for stop words
|
59 |
+
text_tokens = word_tokenize(text_data_raw.lower())
|
60 |
+
text_data_filtered = [word for word in text_tokens if not word in stop_words]
|
61 |
+
text_data_processed = " ".join(text_data_filtered)
|
62 |
+
st.write("Processed Resume:", text_data_processed)
|
63 |
+
|
64 |
+
# Encode the processed job description and resume text
|
65 |
+
job_embedding = model.encode([job_desc_processed])
|
66 |
+
resume_embedding = model.encode([text_data_processed])
|
67 |
# Calculate the cosine similarity between the two embeddings
|
68 |
similarity_score = model.similarity(job_embedding, resume_embedding)[0][0]
|
|
|
69 |
with st.popover(f"See Result for Applicant {i}"):
|
70 |
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
|
71 |
st.info(
|
|
|
76 |
else:
|
77 |
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
|
78 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
|
79 |
+
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
|
|
|
|
|
|