nlpblogs commited on
Commit
83ab759
·
verified ·
1 Parent(s): 172d695

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -2
app.py CHANGED
@@ -2,11 +2,21 @@ from sentence_transformers import SentenceTransformer
2
  import streamlit as st
3
  import pandas as pd
4
  from PyPDF2 import PdfReader
 
 
 
 
 
5
 
6
  model = SentenceTransformer("all-mpnet-base-v2")
7
  st.title("AI Resume Analysis based on Keywords App")
8
  st.divider()
9
  job_desc = st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc")
 
 
 
 
 
10
 
11
  if 'applicant_data' not in st.session_state:
12
  st.session_state['applicant_data'] = {}
@@ -30,8 +40,13 @@ for i in range(1, 51): # Looping for 50 applicants
30
  for page in pdf_reader.pages:
31
  text_data += page.extract_text()
32
  with st.expander(f"See Applicant's {i} resume"):
33
- st.write(text_data)
34
-
 
 
 
 
 
35
  # Encode the job description and resume text separately
36
  job_embedding = model.encode([job_desc])
37
  resume_embedding = model.encode([text_data])
 
2
  import streamlit as st
3
  import pandas as pd
4
  from PyPDF2 import PdfReader
5
+ import nltk
6
+ nltk.download('punkt')
7
+ from nltk.corpus import stopwords
8
+ nltk.download('stopwords')
9
+ from nltk.tokenize import word_tokenize
10
 
11
  model = SentenceTransformer("all-mpnet-base-v2")
12
  st.title("AI Resume Analysis based on Keywords App")
13
  st.divider()
14
  job_desc = st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc")
15
+ text_tokens = []
16
+ for sentence in job_desc:
17
+ text_tokens.extend(word_tokenize(job_desc))
18
+ job_desc = [word for word in text_tokens if not word in stopwords.words()]
19
+ st.write(job_desc)
20
 
21
  if 'applicant_data' not in st.session_state:
22
  st.session_state['applicant_data'] = {}
 
40
  for page in pdf_reader.pages:
41
  text_data += page.extract_text()
42
  with st.expander(f"See Applicant's {i} resume"):
43
+ text_tokens = []
44
+ for sentence in text_data:
45
+ text_tokens.extend(word_tokenize(text_data))
46
+ text_data = [word for word in text_tokens if not word in stopwords.words()]
47
+ st.write(text_data)
48
+
49
+
50
  # Encode the job description and resume text separately
51
  job_embedding = model.encode([job_desc])
52
  resume_embedding = model.encode([text_data])