Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,51 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from PyPDF2 import PdfReader
|
3 |
import pandas as pd
|
4 |
-
from
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
from gliner import GLiNER
|
7 |
-
import plotly.express as px
|
8 |
-
import time
|
9 |
-
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
model = SentenceTransformer("all-mpnet-base-v2")
|
12 |
-
|
13 |
-
|
14 |
st.title("AI Resume Analysis based on Keywords App")
|
15 |
st.divider()
|
16 |
-
|
17 |
-
job = pd.Series(st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc"), name="Text")
|
18 |
|
19 |
if 'applicant_data' not in st.session_state:
|
20 |
st.session_state['applicant_data'] = {}
|
21 |
-
|
22 |
max_attempts = 1
|
23 |
-
|
24 |
-
for i in range(1, 51): # Looping for 2 applicants
|
25 |
st.subheader(f"Applicant {i} Resume", divider="green")
|
26 |
applicant_key = f"applicant_{i}"
|
27 |
upload_key = f"candidate_{i}"
|
28 |
-
|
29 |
if applicant_key not in st.session_state['applicant_data']:
|
30 |
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
|
31 |
-
|
32 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
|
33 |
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
|
34 |
-
|
35 |
if uploaded_file:
|
36 |
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
|
37 |
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
|
38 |
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
|
39 |
-
|
40 |
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
embeddings = model.encode([result])
|
54 |
-
similarities = model.similarity(embeddings, embeddings)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
for j, similarity_score in enumerate(similarities[0][1:]):
|
59 |
with st.popover(f"See Result for Applicant {i}"):
|
60 |
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
|
61 |
st.info(
|
62 |
f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
|
63 |
-
|
64 |
-
|
|
|
65 |
else:
|
66 |
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
|
67 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
import streamlit as st
|
|
|
3 |
import pandas as pd
|
4 |
+
from PyPDF2 import PdfReader
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
model = SentenceTransformer("all-mpnet-base-v2")
|
|
|
|
|
7 |
st.title("AI Resume Analysis based on Keywords App")
|
8 |
st.divider()
|
9 |
+
job_desc = st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc")
|
|
|
10 |
|
11 |
if 'applicant_data' not in st.session_state:
|
12 |
st.session_state['applicant_data'] = {}
|
|
|
13 |
max_attempts = 1
|
14 |
+
for i in range(1, 51): # Looping for 50 applicants
|
|
|
15 |
st.subheader(f"Applicant {i} Resume", divider="green")
|
16 |
applicant_key = f"applicant_{i}"
|
17 |
upload_key = f"candidate_{i}"
|
|
|
18 |
if applicant_key not in st.session_state['applicant_data']:
|
19 |
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
|
|
|
20 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
|
21 |
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
|
|
|
22 |
if uploaded_file:
|
23 |
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
|
24 |
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
|
25 |
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
|
|
|
26 |
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
|
27 |
+
try:
|
28 |
+
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
|
29 |
+
text_data = ""
|
30 |
+
for page in pdf_reader.pages:
|
31 |
+
text_data += page.extract_text()
|
32 |
+
with st.expander(f"See Applicant's {i} resume"):
|
33 |
+
st.write(text_data)
|
34 |
|
35 |
+
# Encode the job description and resume text separately
|
36 |
+
job_embedding = model.encode(job_desc)
|
37 |
+
resume_embedding = model.encode(text_data)
|
38 |
|
39 |
+
# Calculate the cosine similarity between the two embeddings
|
40 |
+
similarity_score = model.similarity(job_embedding, resume_embedding)[0][0]
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
with st.popover(f"See Result for Applicant {i}"):
|
43 |
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
|
44 |
st.info(
|
45 |
f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
|
46 |
+
st.session_state['applicant_data'][applicant_key]['analysis_done'] = True
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"An error occurred while processing Applicant {i}'s resume: {e}")
|
49 |
else:
|
50 |
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
|
51 |
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
|