Update app.py
Browse files
app.py
CHANGED
@@ -32,13 +32,6 @@ import plotly.express as px
|
|
32 |
import zipfile
|
33 |
import torch
|
34 |
|
35 |
-
import matplotlib.pyplot as plt
|
36 |
-
from wordcloud import WordCloud
|
37 |
-
from nltk.corpus import stopwords
|
38 |
-
|
39 |
-
import nltk
|
40 |
-
nltk.download('stopwords')
|
41 |
-
|
42 |
|
43 |
|
44 |
with st.sidebar:
|
@@ -142,8 +135,7 @@ if st.button("Sentiment Analysis", type="secondary"):
|
|
142 |
st.error(f"Exception during comment extraction: {e}")
|
143 |
driver.quit()
|
144 |
df = pd.DataFrame(data, columns=["Comment"])
|
145 |
-
|
146 |
-
|
147 |
|
148 |
if tokenizer and model:
|
149 |
inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
|
@@ -164,9 +156,12 @@ if st.button("Sentiment Analysis", type="secondary"):
|
|
164 |
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
165 |
st.plotly_chart(fig1)
|
166 |
|
|
|
|
|
|
|
167 |
with tab2:
|
168 |
text = " ".join(comment for comment in df['Comment'])
|
169 |
-
stopwords_set = set(stopwords.words('english'))
|
170 |
text = re.sub('[^A-Za-z]+', ' ', text)
|
171 |
words = text.split()
|
172 |
clean_text = [word for word in words if word.lower() not in stopwords_set]
|
@@ -177,8 +172,6 @@ if st.button("Sentiment Analysis", type="secondary"):
|
|
177 |
plt.axis('off')
|
178 |
st.pyplot(fig)
|
179 |
|
180 |
-
result = pd.concat([df, sentiment_df], axis=1)
|
181 |
-
|
182 |
|
183 |
csv = result.to_csv(index=False)
|
184 |
st.download_button(
|
@@ -193,11 +186,8 @@ if st.button("Sentiment Analysis", type="secondary"):
|
|
193 |
else:
|
194 |
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
|
195 |
|
196 |
-
if 'url_count' in st.session_state:
|
197 |
st.write(f"URL pasted {st.session_state['url_count']} times.")
|
198 |
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
32 |
import zipfile
|
33 |
import torch
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
with st.sidebar:
|
|
|
135 |
st.error(f"Exception during comment extraction: {e}")
|
136 |
driver.quit()
|
137 |
df = pd.DataFrame(data, columns=["Comment"])
|
138 |
+
st.dataframe(df)
|
|
|
139 |
|
140 |
if tokenizer and model:
|
141 |
inputs = tokenizer(df['Comment'].tolist(), return_tensors="pt", padding=True, truncation=True)
|
|
|
156 |
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
157 |
st.plotly_chart(fig1)
|
158 |
|
159 |
+
result = pd.concat([df, sentiment_df], axis=1)
|
160 |
+
|
161 |
+
|
162 |
with tab2:
|
163 |
text = " ".join(comment for comment in df['Comment'])
|
164 |
+
stopwords_set = set(stopwords.words('english'))
|
165 |
text = re.sub('[^A-Za-z]+', ' ', text)
|
166 |
words = text.split()
|
167 |
clean_text = [word for word in words if word.lower() not in stopwords_set]
|
|
|
172 |
plt.axis('off')
|
173 |
st.pyplot(fig)
|
174 |
|
|
|
|
|
175 |
|
176 |
csv = result.to_csv(index=False)
|
177 |
st.download_button(
|
|
|
186 |
else:
|
187 |
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
|
188 |
|
189 |
+
if 'url_count' in st.session_state: #added if statement.
|
190 |
st.write(f"URL pasted {st.session_state['url_count']} times.")
|
191 |
|
192 |
|
193 |
+
|
|
|
|
|
|