Spaces:
Runtime error
Runtime error
Commit
·
f4128ca
1
Parent(s):
dbe46bc
app
Browse files
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
import wikipedia
|
| 3 |
+
from wikipedia.exceptions import DisambiguationError
|
| 4 |
+
from transformers import TFAutoModel, AutoTokenizer
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
try:
|
| 9 |
+
nlp = spacy.load("en_core_web_sm")
|
| 10 |
+
except:
|
| 11 |
+
spacy.cli.download("en_core_web_sm")
|
| 12 |
+
nlp = spacy.load("en_core_web_sm")
|
| 13 |
+
|
| 14 |
+
wh_words = ['what', 'who', 'how', 'when', 'which']
|
| 15 |
+
def get_concepts(text):
|
| 16 |
+
text = text.lower()
|
| 17 |
+
doc = nlp(text)
|
| 18 |
+
concepts = []
|
| 19 |
+
for chunk in doc.noun_chunks:
|
| 20 |
+
if chunk.text not in wh_words:
|
| 21 |
+
concepts.append(chunk.text)
|
| 22 |
+
return concepts
|
| 23 |
+
|
| 24 |
+
def get_passages(text, k=100):
|
| 25 |
+
doc = nlp(text)
|
| 26 |
+
passages = []
|
| 27 |
+
passage_len = 0
|
| 28 |
+
passage = ""
|
| 29 |
+
sents = list(doc.sents)
|
| 30 |
+
for i in range(len(sents)):
|
| 31 |
+
sen = sents[i]
|
| 32 |
+
passage_len+=len(sen)
|
| 33 |
+
if passage_len >= k:
|
| 34 |
+
passages.append(passage)
|
| 35 |
+
passage = sen.text
|
| 36 |
+
passage_len = len(sen)
|
| 37 |
+
continue
|
| 38 |
+
|
| 39 |
+
elif i==(len(sents)-1):
|
| 40 |
+
passage+=" "+sen.text
|
| 41 |
+
passages.append(passage)
|
| 42 |
+
passage = ""
|
| 43 |
+
passage_len = 0
|
| 44 |
+
continue
|
| 45 |
+
|
| 46 |
+
passage+=" "+sen.text
|
| 47 |
+
return passages
|
| 48 |
+
|
| 49 |
+
def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
| 50 |
+
dicts = []
|
| 51 |
+
for concept in concepts:
|
| 52 |
+
wikis = wikipedia.search(concept, results=n_results)
|
| 53 |
+
print(concept, "No of Wikis: ",len(wikis))
|
| 54 |
+
for wiki in wikis:
|
| 55 |
+
try:
|
| 56 |
+
html_page = wikipedia.page(title = wiki, auto_suggest = False)
|
| 57 |
+
except DisambiguationError:
|
| 58 |
+
continue
|
| 59 |
+
|
| 60 |
+
passages = get_passages(html_page.content, k=k)
|
| 61 |
+
for passage in passages:
|
| 62 |
+
i_dicts = {}
|
| 63 |
+
i_dicts['text'] = passage
|
| 64 |
+
i_dicts['title'] = wiki
|
| 65 |
+
dicts.append(i_dicts)
|
| 66 |
+
return dicts
|
| 67 |
+
|
| 68 |
+
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 69 |
+
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 70 |
+
|
| 71 |
+
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 72 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 73 |
+
|
| 74 |
+
def get_title_text_combined(passage_dicts):
|
| 75 |
+
res = []
|
| 76 |
+
for p in passage_dicts:
|
| 77 |
+
res.append(tuple((p['title'], p['text'])))
|
| 78 |
+
return res
|
| 79 |
+
|
| 80 |
+
def extracted_passage_embeddings(processed_passages, max_length=156):
|
| 81 |
+
passage_inputs = p_tokenizer.batch_encode_plus(
|
| 82 |
+
processed_passages,
|
| 83 |
+
add_special_tokens=True,
|
| 84 |
+
truncation=True,
|
| 85 |
+
padding="max_length",
|
| 86 |
+
max_length=max_length,
|
| 87 |
+
return_token_type_ids=True
|
| 88 |
+
)
|
| 89 |
+
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']),
|
| 90 |
+
np.array(passage_inputs['attention_mask']),
|
| 91 |
+
np.array(passage_inputs['token_type_ids'])],
|
| 92 |
+
batch_size=64,
|
| 93 |
+
verbose=1)
|
| 94 |
+
return passage_embeddings
|
| 95 |
+
|
| 96 |
+
def extracted_query_embeddings(queries, max_length=64):
|
| 97 |
+
query_inputs = q_tokenizer.batch_encode_plus(
|
| 98 |
+
queries,
|
| 99 |
+
add_special_tokens=True,
|
| 100 |
+
truncation=True,
|
| 101 |
+
padding="max_length",
|
| 102 |
+
max_length=max_length,
|
| 103 |
+
return_token_type_ids=True
|
| 104 |
+
)
|
| 105 |
+
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
|
| 106 |
+
np.array(query_inputs['attention_mask']),
|
| 107 |
+
np.array(query_inputs['token_type_ids'])],
|
| 108 |
+
batch_size=1,
|
| 109 |
+
verbose=1)
|
| 110 |
+
return query_embeddings
|
| 111 |
+
|
| 112 |
+
def search(question):
|
| 113 |
+
concepts = get_concepts(question)
|
| 114 |
+
print("concepts: ",concepts)
|
| 115 |
+
dicts = get_dicts_for_dpr(concepts, n_results=1)
|
| 116 |
+
print("dicts len: ", len(dicts))
|
| 117 |
+
processed_passages = get_title_text_combined(dicts)
|
| 118 |
+
passage_embeddings = extracted_passage_embeddings(processed_passages)
|
| 119 |
+
query_embeddings = extracted_query_embeddings([question])
|
| 120 |
+
faiss_index = faiss.IndexFlatL2(128)
|
| 121 |
+
faiss_index.add(passage_embeddings.pooler_output)
|
| 122 |
+
prob, index = faiss_index.search(query_embeddings.pooler_output, k=10)
|
| 123 |
+
return pd.DataFrame([dicts[i] for i in index[0]])
|
| 124 |
+
|
| 125 |
+
import gradio as gr
|
| 126 |
+
inp = gr.inputs.Textbox(lines=2, default=question, label="Question")
|
| 127 |
+
out = gr.outputs.Dataframe(label="Answers")#gr.outputs.Textbox(label="Answers")
|
| 128 |
+
gr.Interface(fn=search, inputs=inp, outputs=out).launch()
|