Spaces:
No application file
No application file
Delete main.py
Browse files
main.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from pydantic import BaseModel
|
3 |
-
import cv2
|
4 |
-
from deepface import DeepFace
|
5 |
-
import tempfile
|
6 |
-
import requests
|
7 |
-
import shutil
|
8 |
-
import logging
|
9 |
-
from typing import Optional
|
10 |
-
|
11 |
-
# Configure logging
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
-
|
15 |
-
app = FastAPI()
|
16 |
-
|
17 |
-
# Define the request model
|
18 |
-
class FaceVerificationRequest(BaseModel):
|
19 |
-
id_url: str
|
20 |
-
ref_url: str
|
21 |
-
|
22 |
-
def download_image(url: str) -> Optional[str]:
|
23 |
-
"""Downloads an image from a URL and saves it to a temporary file."""
|
24 |
-
try:
|
25 |
-
response = requests.get(url, stream=True)
|
26 |
-
response.raise_for_status()
|
27 |
-
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
|
28 |
-
with open(temp_path, "wb") as f:
|
29 |
-
shutil.copyfileobj(response.raw, f)
|
30 |
-
logger.info(f"Image downloaded successfully: {url}")
|
31 |
-
return temp_path
|
32 |
-
except requests.exceptions.RequestException as e:
|
33 |
-
logger.error(f"Failed to download image from {url}: {e}")
|
34 |
-
return None
|
35 |
-
|
36 |
-
def detect_and_crop_face(image_path, detector_backend="mtcnn") -> Optional[str]:
|
37 |
-
"""Detects and crops the face from an image."""
|
38 |
-
try:
|
39 |
-
faces = DeepFace.extract_faces(img_path=image_path, detector_backend=detector_backend, enforce_detection=False)
|
40 |
-
if not faces:
|
41 |
-
logger.warning("No faces detected.")
|
42 |
-
return None
|
43 |
-
|
44 |
-
face_info = faces[0]
|
45 |
-
facial_area = face_info.get("facial_area", {})
|
46 |
-
if not facial_area:
|
47 |
-
logger.warning("No valid facial area found.")
|
48 |
-
return None
|
49 |
-
|
50 |
-
x, y, w, h = facial_area["x"], facial_area["y"], facial_area["w"], facial_area["h"]
|
51 |
-
image = cv2.imread(image_path)
|
52 |
-
if image is None or w <= 0 or h <= 0:
|
53 |
-
logger.error("Invalid face cropping dimensions.")
|
54 |
-
return None
|
55 |
-
|
56 |
-
cropped_face = image[y:y+h, x:x+w]
|
57 |
-
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
|
58 |
-
cv2.imwrite(temp_path, cropped_face)
|
59 |
-
logger.info(f"Face successfully cropped and saved at {temp_path}")
|
60 |
-
return temp_path
|
61 |
-
except Exception as e:
|
62 |
-
logger.error(f"Error during face detection: {e}")
|
63 |
-
return None
|
64 |
-
|
65 |
-
@app.post("/verify")
|
66 |
-
async def verify_face(request: FaceVerificationRequest):
|
67 |
-
"""Verifies whether two faces belong to the same person."""
|
68 |
-
try:
|
69 |
-
id_path = download_image(request.id_url)
|
70 |
-
ref_path = download_image(request.ref_url)
|
71 |
-
|
72 |
-
if not id_path or not ref_path:
|
73 |
-
return {"error": "Failed to download images."}
|
74 |
-
|
75 |
-
cropped_face_path = detect_and_crop_face(id_path)
|
76 |
-
if cropped_face_path:
|
77 |
-
result = DeepFace.verify(
|
78 |
-
img1_path=cropped_face_path,
|
79 |
-
img2_path=ref_path,
|
80 |
-
model_name="Facenet",
|
81 |
-
detector_backend="mtcnn"
|
82 |
-
)
|
83 |
-
threshold = 0.6
|
84 |
-
distance = result.get("distance", 1.0)
|
85 |
-
is_match = distance < threshold
|
86 |
-
|
87 |
-
logger.info(f"Face verification result: {result}")
|
88 |
-
return {"match": is_match}
|
89 |
-
else:
|
90 |
-
return {"error": "Face detection failed for ID card image."}
|
91 |
-
except Exception as e:
|
92 |
-
logger.error(f"Verification failed: {e}")
|
93 |
-
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|