Spaces:
Sleeping
Sleeping
burtenshaw
commited on
Commit
·
75075b9
1
Parent(s):
e2c7eb7
generalize application for any course
Browse files- .gitignore +5 -0
- app.py +160 -414
- certificate.pdf +0 -0
- certificate_models/certificate-excellence.png +0 -0
- certificate_models/{certificate-completion.png → certificate.png} +0 -0
- criteria.py +200 -0
- org.py +38 -0
- pyproject.toml +13 -0
- utils.py +0 -16
.gitignore
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.ruff_cache
|
| 2 |
+
.venv
|
| 3 |
+
__pycache__
|
| 4 |
+
uv.lock
|
| 5 |
+
.python-version
|
app.py
CHANGED
|
@@ -1,435 +1,181 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from huggingface_hub import HfApi, hf_hub_download, Repository
|
| 3 |
-
from huggingface_hub.repocard import metadata_load
|
| 4 |
-
|
| 5 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 6 |
-
|
| 7 |
-
from datetime import date
|
| 8 |
-
import time
|
| 9 |
-
|
| 10 |
import os
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
from
|
| 14 |
-
|
| 15 |
-
api = HfApi()
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
repo = Repository(
|
| 24 |
-
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
| 25 |
-
)
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
"""
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
:param hf_username: User HF username
|
| 32 |
-
:param env_tag: Environment tag
|
| 33 |
-
:param lib_tag: Library tag
|
| 34 |
-
"""
|
| 35 |
-
api = HfApi()
|
| 36 |
-
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
|
| 37 |
-
|
| 38 |
-
user_model_ids = [x.modelId for x in models]
|
| 39 |
-
return user_model_ids
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def get_user_sf_models(hf_username, env_tag, lib_tag):
|
| 43 |
-
models_sf = []
|
| 44 |
-
models = api.list_models(author=hf_username, filter=["reinforcement-learning", lib_tag])
|
| 45 |
-
|
| 46 |
-
user_model_ids = [x.modelId for x in models]
|
| 47 |
-
|
| 48 |
-
for model in user_model_ids:
|
| 49 |
-
meta = get_metadata(model)
|
| 50 |
-
if meta is None:
|
| 51 |
-
continue
|
| 52 |
-
result = meta["model-index"][0]["results"][0]["dataset"]["name"]
|
| 53 |
-
if result == env_tag:
|
| 54 |
-
models_sf.append(model)
|
| 55 |
-
|
| 56 |
-
return models_sf
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def get_metadata(model_id):
|
| 60 |
-
"""
|
| 61 |
-
Get model metadata (contains evaluation data)
|
| 62 |
-
:param model_id
|
| 63 |
-
"""
|
| 64 |
-
try:
|
| 65 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 66 |
-
return metadata_load(readme_path)
|
| 67 |
-
except requests.exceptions.HTTPError:
|
| 68 |
-
# 404 README.md not found
|
| 69 |
-
return None
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def parse_metrics_accuracy(meta):
|
| 73 |
-
"""
|
| 74 |
-
Get model results and parse it
|
| 75 |
-
:param meta: model metadata
|
| 76 |
-
"""
|
| 77 |
-
if "model-index" not in meta:
|
| 78 |
-
return None
|
| 79 |
-
result = meta["model-index"][0]["results"]
|
| 80 |
-
metrics = result[0]["metrics"]
|
| 81 |
-
accuracy = metrics[0]["value"]
|
| 82 |
-
|
| 83 |
-
return accuracy
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def parse_rewards(accuracy):
|
| 87 |
-
"""
|
| 88 |
-
Parse mean_reward and std_reward
|
| 89 |
-
:param accuracy: model results
|
| 90 |
-
"""
|
| 91 |
-
default_std = -1000
|
| 92 |
-
default_reward= -1000
|
| 93 |
-
if accuracy != None:
|
| 94 |
-
accuracy = str(accuracy)
|
| 95 |
-
parsed = accuracy.split(' +/- ')
|
| 96 |
-
if len(parsed)>1:
|
| 97 |
-
mean_reward = float(parsed[0])
|
| 98 |
-
std_reward = float(parsed[1])
|
| 99 |
-
elif len(parsed)==1: #only mean reward
|
| 100 |
-
mean_reward = float(parsed[0])
|
| 101 |
-
std_reward = float(0)
|
| 102 |
-
else:
|
| 103 |
-
mean_reward = float(default_std)
|
| 104 |
-
std_reward = float(default_reward)
|
| 105 |
-
else:
|
| 106 |
-
mean_reward = float(default_std)
|
| 107 |
-
std_reward = float(default_reward)
|
| 108 |
-
|
| 109 |
-
return mean_reward, std_reward
|
| 110 |
-
|
| 111 |
-
def calculate_best_result(user_model_ids):
|
| 112 |
-
"""
|
| 113 |
-
Calculate the best results of a unit
|
| 114 |
-
best_result = mean_reward - std_reward
|
| 115 |
-
:param user_model_ids: RL models of a user
|
| 116 |
-
"""
|
| 117 |
-
best_result = -1000
|
| 118 |
-
best_model_id = ""
|
| 119 |
-
for model in user_model_ids:
|
| 120 |
-
meta = get_metadata(model)
|
| 121 |
-
if meta is None:
|
| 122 |
-
continue
|
| 123 |
-
accuracy = parse_metrics_accuracy(meta)
|
| 124 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
| 125 |
-
result = mean_reward - std_reward
|
| 126 |
-
if result > best_result:
|
| 127 |
-
best_result = result
|
| 128 |
-
best_model_id = model
|
| 129 |
-
|
| 130 |
-
return best_result, best_model_id
|
| 131 |
-
|
| 132 |
-
def check_if_passed(model):
|
| 133 |
-
"""
|
| 134 |
-
Check if result >= baseline
|
| 135 |
-
to know if you pass
|
| 136 |
-
:param model: user model
|
| 137 |
-
"""
|
| 138 |
-
if model["best_result"] >= model["min_result"]:
|
| 139 |
-
model["passed_"] = True
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def certification(hf_username, first_name, last_name):
|
| 143 |
-
results_certification = [
|
| 144 |
-
{
|
| 145 |
-
"unit": "Unit 1",
|
| 146 |
-
"env": "LunarLander-v2",
|
| 147 |
-
"library": "stable-baselines3",
|
| 148 |
-
"min_result": 200,
|
| 149 |
-
"best_result": 0,
|
| 150 |
-
"best_model_id": "",
|
| 151 |
-
"passed_": False
|
| 152 |
-
},
|
| 153 |
-
{
|
| 154 |
-
"unit": "Unit 2",
|
| 155 |
-
"env": "Taxi-v3",
|
| 156 |
-
"library": "q-learning",
|
| 157 |
-
"min_result": 4,
|
| 158 |
-
"best_result": 0,
|
| 159 |
-
"best_model_id": "",
|
| 160 |
-
"passed_": False
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"unit": "Unit 3",
|
| 164 |
-
"env": "SpaceInvadersNoFrameskip-v4",
|
| 165 |
-
"library": "stable-baselines3",
|
| 166 |
-
"min_result": 200,
|
| 167 |
-
"best_result": 0,
|
| 168 |
-
"best_model_id": "",
|
| 169 |
-
"passed_": False
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"unit": "Unit 4",
|
| 173 |
-
"env": "CartPole-v1",
|
| 174 |
-
"library": "reinforce",
|
| 175 |
-
"min_result": 350,
|
| 176 |
-
"best_result": 0,
|
| 177 |
-
"best_model_id": "",
|
| 178 |
-
"passed_": False
|
| 179 |
-
},
|
| 180 |
-
{
|
| 181 |
-
"unit": "Unit 4",
|
| 182 |
-
"env": "Pixelcopter-PLE-v0",
|
| 183 |
-
"library": "reinforce",
|
| 184 |
-
"min_result": 5,
|
| 185 |
-
"best_result": 0,
|
| 186 |
-
"best_model_id": "",
|
| 187 |
-
"passed_": False
|
| 188 |
-
},
|
| 189 |
-
{
|
| 190 |
-
"unit": "Unit 5",
|
| 191 |
-
"env": "ML-Agents-SnowballTarget",
|
| 192 |
-
"library": "ml-agents",
|
| 193 |
-
"min_result": -100,
|
| 194 |
-
"best_result": 0,
|
| 195 |
-
"best_model_id": "",
|
| 196 |
-
"passed_": False
|
| 197 |
-
},
|
| 198 |
-
{
|
| 199 |
-
"unit": "Unit 5",
|
| 200 |
-
"env": "ML-Agents-Pyramids",
|
| 201 |
-
"library": "ml-agents",
|
| 202 |
-
"min_result": -100,
|
| 203 |
-
"best_result": 0,
|
| 204 |
-
"best_model_id": "",
|
| 205 |
-
"passed_": False
|
| 206 |
-
},
|
| 207 |
-
{
|
| 208 |
-
"unit": "Unit 6",
|
| 209 |
-
"env": "PandaReachDense",
|
| 210 |
-
"library": "stable-baselines3",
|
| 211 |
-
"min_result": -3.5,
|
| 212 |
-
"best_result": 0,
|
| 213 |
-
"best_model_id": "",
|
| 214 |
-
"passed_": False
|
| 215 |
-
},
|
| 216 |
-
{
|
| 217 |
-
"unit": "Unit 7",
|
| 218 |
-
"env": "ML-Agents-SoccerTwos",
|
| 219 |
-
"library": "ml-agents",
|
| 220 |
-
"min_result": -100,
|
| 221 |
-
"best_result": 0,
|
| 222 |
-
"best_model_id": "",
|
| 223 |
-
"passed_": False
|
| 224 |
-
},
|
| 225 |
-
{
|
| 226 |
-
"unit": "Unit 8 PI",
|
| 227 |
-
"env": "LunarLander-v2",
|
| 228 |
-
"library": "deep-rl-course",
|
| 229 |
-
"min_result": -500,
|
| 230 |
-
"best_result": 0,
|
| 231 |
-
"best_model_id": "",
|
| 232 |
-
"passed_": False
|
| 233 |
-
},
|
| 234 |
-
{
|
| 235 |
-
"unit": "Unit 8 PII",
|
| 236 |
-
"env": "doom_health_gathering_supreme",
|
| 237 |
-
"library": "sample-factory",
|
| 238 |
-
"min_result": 5,
|
| 239 |
-
"best_result": 0,
|
| 240 |
-
"best_model_id": "",
|
| 241 |
-
"passed_": False
|
| 242 |
-
},
|
| 243 |
-
]
|
| 244 |
-
for unit in results_certification:
|
| 245 |
-
if unit["unit"] == "Unit 6":
|
| 246 |
-
# Since Unit 6 can use PandaReachDense-v2 or v3
|
| 247 |
-
user_models = get_user_models(hf_username, "PandaReachDense-v3", unit["library"])
|
| 248 |
-
if len(user_models) == 0:
|
| 249 |
-
print("Empty")
|
| 250 |
-
user_models = get_user_models(hf_username, "PandaReachDense-v2", unit["library"])
|
| 251 |
-
elif unit["unit"] != "Unit 8 PII":
|
| 252 |
-
# Get user model
|
| 253 |
-
user_models = get_user_models(hf_username, unit['env'], unit['library'])
|
| 254 |
-
# For sample factory vizdoom we don't have env tag for now
|
| 255 |
-
else:
|
| 256 |
-
user_models = get_user_sf_models(hf_username, unit['env'], unit['library'])
|
| 257 |
-
|
| 258 |
-
# Calculate the best result and get the best_model_id
|
| 259 |
-
best_result, best_model_id = calculate_best_result(user_models)
|
| 260 |
-
|
| 261 |
-
# Save best_result and best_model_id
|
| 262 |
-
unit["best_result"] = best_result
|
| 263 |
-
unit["best_model_id"] = make_clickable_model(best_model_id)
|
| 264 |
-
|
| 265 |
-
# Based on best_result do we pass the unit?
|
| 266 |
-
check_if_passed(unit)
|
| 267 |
-
unit["passed"] = pass_emoji(unit["passed_"])
|
| 268 |
-
|
| 269 |
-
print(results_certification)
|
| 270 |
-
|
| 271 |
-
df1 = pd.DataFrame(results_certification)
|
| 272 |
-
|
| 273 |
-
df = df1[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']]
|
| 274 |
-
|
| 275 |
-
certificate, message, pdf, pass_ = verify_certification(results_certification, hf_username, first_name, last_name)
|
| 276 |
-
print("MESSAGE", message)
|
| 277 |
-
|
| 278 |
-
if pass_:
|
| 279 |
-
visible = True
|
| 280 |
-
else:
|
| 281 |
-
visible = False
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
return message, pdf, certificate, df, output_row.update(visible=visible)
|
| 285 |
-
|
| 286 |
-
"""
|
| 287 |
-
Verify that the user pass.
|
| 288 |
-
If yes:
|
| 289 |
-
- Generate the certification
|
| 290 |
-
- Send an email
|
| 291 |
-
- Print the certification
|
| 292 |
-
|
| 293 |
-
If no:
|
| 294 |
-
- Explain why the user didn't pass yet
|
| 295 |
-
"""
|
| 296 |
-
def verify_certification(df, hf_username, first_name, last_name):
|
| 297 |
-
# Check that we pass
|
| 298 |
-
model_pass_nb = 0
|
| 299 |
-
pass_percentage = 0
|
| 300 |
-
pass_ = False
|
| 301 |
-
|
| 302 |
-
for unit in df:
|
| 303 |
-
if unit["passed_"] is True:
|
| 304 |
-
model_pass_nb += 1
|
| 305 |
-
|
| 306 |
-
pass_percentage = (model_pass_nb/11) * 100
|
| 307 |
-
print("pass_percentage", pass_percentage)
|
| 308 |
-
|
| 309 |
-
if pass_percentage == 100:
|
| 310 |
-
pass_ = True
|
| 311 |
-
# Generate a certificate of excellence
|
| 312 |
-
certificate, pdf = generate_certificate("./certificate_models/certificate-excellence.png", first_name, last_name)
|
| 313 |
-
|
| 314 |
-
# Add this user to our database
|
| 315 |
-
add_certified_user(hf_username, first_name, last_name, pass_percentage)
|
| 316 |
-
|
| 317 |
-
# Add a message
|
| 318 |
-
message = """
|
| 319 |
-
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course 🎉! \n
|
| 320 |
-
Since you pass 100% of the hands-on you get a Certificate of Excellence 🎓. \n
|
| 321 |
-
You can download your certificate below ⬇️ \n
|
| 322 |
-
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @ThomasSimonini and @huggingface) 🤗
|
| 323 |
-
"""
|
| 324 |
|
| 325 |
-
elif pass_percentage < 100 and pass_percentage >= 80:
|
| 326 |
-
pass_ = True
|
| 327 |
-
# Certificate of completion
|
| 328 |
-
certificate, pdf = generate_certificate("./certificate_models/certificate-completion.png", first_name, last_name)
|
| 329 |
-
|
| 330 |
-
# Add this user to our database
|
| 331 |
-
add_certified_user(hf_username, first_name, last_name, pass_percentage)
|
| 332 |
-
|
| 333 |
-
# Add a message
|
| 334 |
-
message = """
|
| 335 |
-
Congratulations, you successfully completed the Hugging Face Deep Reinforcement Learning Course 🎉! \n
|
| 336 |
-
Since you pass 80% of the hands-on you get a Certificate of Completion 🎓. \n
|
| 337 |
-
You can download your certificate below ⬇️ \n
|
| 338 |
-
Don't hesitate to share your certificate image below on Twitter and Linkedin (you can tag me @ThomasSimonini and @huggingface) 🤗 \n
|
| 339 |
-
You can try to get a Certificate of Excellence if you pass 100% of the hands-on, don't hesitate to check which unit you didn't pass and update these models.
|
| 340 |
-
"""
|
| 341 |
-
|
| 342 |
-
else:
|
| 343 |
-
# Not pass yet
|
| 344 |
-
certificate = Image.new("RGB", (100, 100), (255, 255, 255))
|
| 345 |
-
pdf = "./fail.pdf"
|
| 346 |
-
|
| 347 |
-
# Add a message
|
| 348 |
-
message = """
|
| 349 |
-
You didn't pass the minimum of 80% of the hands-on to get a certificate of completion. But don't be discouraged! \n
|
| 350 |
-
Check below which units you need to do again to get your certificate 💪
|
| 351 |
-
"""
|
| 352 |
-
print("return certificate")
|
| 353 |
-
return certificate, message, pdf, pass_
|
| 354 |
-
|
| 355 |
|
| 356 |
-
def generate_certificate(
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
| 358 |
d = ImageDraw.Draw(im)
|
| 359 |
|
| 360 |
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
|
| 361 |
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
|
| 362 |
-
|
| 363 |
-
name =
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
#
|
| 369 |
-
|
| 370 |
-
# Name
|
| 371 |
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
|
| 372 |
|
| 373 |
-
#
|
| 374 |
-
|
|
|
|
|
|
|
| 375 |
|
| 376 |
-
#
|
| 377 |
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
|
| 378 |
|
| 379 |
-
|
| 380 |
-
pdf = im.convert(
|
| 381 |
-
pdf.save(
|
| 382 |
|
| 383 |
return im, "./certificate.pdf"
|
| 384 |
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
-
def
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import requests
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
from datetime import date
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
+
from huggingface_hub import whoami
|
| 9 |
|
| 10 |
+
from criteria import check_certification as check_certification_criteria
|
| 11 |
+
from org import join_finishers_org
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def download_profile_picture(profile_url: str):
|
| 15 |
+
"""Download profile picture from URL."""
|
| 16 |
+
response = requests.get(profile_url)
|
| 17 |
+
return Image.open(BytesIO(response.content))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def generate_certificate(
|
| 21 |
+
certificate_path: str, first_name: str, last_name: str, profile_url: str
|
| 22 |
+
):
|
| 23 |
+
"""Generate certificate image and PDF."""
|
| 24 |
+
im = Image.open(certificate_path)
|
| 25 |
d = ImageDraw.Draw(im)
|
| 26 |
|
| 27 |
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
|
| 28 |
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
|
| 29 |
+
|
| 30 |
+
name = f"{first_name} {last_name}"
|
| 31 |
+
|
| 32 |
+
# Capitalize first letter of each name
|
| 33 |
+
name = name.title()
|
| 34 |
+
|
| 35 |
+
# Add name
|
|
|
|
|
|
|
| 36 |
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
|
| 37 |
|
| 38 |
+
# Add profile picture just below the name
|
| 39 |
+
profile_img = download_profile_picture(profile_url)
|
| 40 |
+
profile_img = profile_img.resize((100, 100))
|
| 41 |
+
im.paste(im=profile_img, box=(350, 700))
|
| 42 |
|
| 43 |
+
# Add date
|
| 44 |
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
|
| 45 |
|
| 46 |
+
# Save PDF
|
| 47 |
+
pdf = im.convert("RGB")
|
| 48 |
+
pdf.save("certificate.pdf")
|
| 49 |
|
| 50 |
return im, "./certificate.pdf"
|
| 51 |
|
| 52 |
|
| 53 |
+
def get_user_info(oauth_token):
|
| 54 |
+
"""Get user info from HF token."""
|
| 55 |
+
if oauth_token is None:
|
| 56 |
+
return None, None, None, None
|
| 57 |
+
try:
|
| 58 |
+
user_info = whoami(oauth_token.token)
|
| 59 |
+
username = user_info["name"]
|
| 60 |
+
name_parts = user_info["fullname"].split(" ", 1)
|
| 61 |
+
first_name = name_parts[0]
|
| 62 |
+
last_name = name_parts[1] if len(name_parts) > 1 else ""
|
| 63 |
+
profile_url = user_info["avatarUrl"]
|
| 64 |
+
return username, first_name, last_name, profile_url
|
| 65 |
+
except:
|
| 66 |
+
return None, None, None, None
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def create_linkedin_button(username: str) -> str:
|
| 70 |
+
"""Create LinkedIn 'Add to Profile' button HTML."""
|
| 71 |
+
current_year = date.today().year
|
| 72 |
+
current_month = date.today().month
|
| 73 |
+
|
| 74 |
+
# URL encode the certificate URL
|
| 75 |
+
cert_url = "https://huggingface.co/agents-course-finishers"
|
| 76 |
+
|
| 77 |
+
linkedin_params = {
|
| 78 |
+
"startTask": "CERTIFICATION_NAME",
|
| 79 |
+
"name": "Hugging Face Course Certificate",
|
| 80 |
+
# "organizationId": "40479", # Hugging Face's LinkedIn Organization ID
|
| 81 |
+
"organizationName": "Hugging Face",
|
| 82 |
+
"issueYear": str(current_year),
|
| 83 |
+
"issueMonth": str(current_month),
|
| 84 |
+
"certUrl": cert_url,
|
| 85 |
+
"certId": username, # Using username as cert ID
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
# Build the LinkedIn button URL
|
| 89 |
+
base_url = "https://www.linkedin.com/profile/add?"
|
| 90 |
+
params = "&".join(
|
| 91 |
+
f"{k}={requests.utils.quote(v)}" for k, v in linkedin_params.items()
|
| 92 |
+
)
|
| 93 |
+
button_url = base_url + params
|
| 94 |
+
|
| 95 |
+
return f"""
|
| 96 |
+
<a href="{button_url}" target="_blank" style="display: block; margin-top: 20px; text-align: center;">
|
| 97 |
+
<img src="https://download.linkedin.com/desktop/add2profile/buttons/en_US.png"
|
| 98 |
+
alt="LinkedIn Add to Profile button">
|
| 99 |
+
</a>
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
|
| 103 |
+
def check_certification(token: gr.OAuthToken | None):
|
| 104 |
+
"""Check certification status for logged-in user."""
|
| 105 |
+
if token is None:
|
| 106 |
+
gr.Warning("Please log in to Hugging Face before checking certification!")
|
| 107 |
+
return None, None, None, gr.Row.update(visible=False)
|
| 108 |
+
|
| 109 |
+
username, first_name, last_name, profile_url = get_user_info(token)
|
| 110 |
+
if not username:
|
| 111 |
+
return (
|
| 112 |
+
"Please login with your Hugging Face account to check certification status",
|
| 113 |
+
None,
|
| 114 |
+
None,
|
| 115 |
+
gr.Row.update(visible=False),
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Check certification criteria
|
| 119 |
+
result = check_certification_criteria(username)
|
| 120 |
+
|
| 121 |
+
# Generate certificate if passed
|
| 122 |
+
if result.passed and result.certificate_path:
|
| 123 |
+
certificate_img, pdf_path = generate_certificate(
|
| 124 |
+
certificate_path=result.certificate_path,
|
| 125 |
+
first_name=first_name,
|
| 126 |
+
last_name=last_name,
|
| 127 |
+
profile_url=profile_url,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Add LinkedIn button for passed certificates
|
| 131 |
+
linkedin_button = create_linkedin_button(username)
|
| 132 |
+
result_message = f"{result.message}\n\n{linkedin_button}"
|
| 133 |
+
else:
|
| 134 |
+
certificate_img = None
|
| 135 |
+
pdf_path = None
|
| 136 |
+
result_message = result.message
|
| 137 |
+
|
| 138 |
+
return (
|
| 139 |
+
gr.update(visible=True, value=result_message, label="Grade"),
|
| 140 |
+
gr.update(visible=result.passed, value=pdf_path, label="Download Certificate"),
|
| 141 |
+
gr.update(visible=result.passed, value=certificate_img, label="Certificate"),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def create_gradio_interface():
|
| 146 |
+
"""Create Gradio web interface with OAuth login."""
|
| 147 |
+
with gr.Blocks() as demo:
|
| 148 |
+
gr.Markdown("""
|
| 149 |
+
# Get your Hugging Face Course Certificate 🎓
|
| 150 |
+
The certification process is completely free.
|
| 151 |
+
|
| 152 |
+
To receive your certificate, you need to **pass 80% of the quiz**.
|
| 153 |
+
|
| 154 |
+
There's **no deadlines, the course is self-paced**.
|
| 155 |
+
|
| 156 |
+
Don't hesitate to share your certificate on Twitter
|
| 157 |
+
(tag @huggingface) and on Linkedin.
|
| 158 |
+
""")
|
| 159 |
+
|
| 160 |
+
# Add login button
|
| 161 |
+
gr.LoginButton()
|
| 162 |
+
|
| 163 |
+
check_progress_button = gr.Button(value="Check My Progress")
|
| 164 |
+
|
| 165 |
+
output_text = gr.Markdown(visible=False, sanitize_html=False)
|
| 166 |
+
output_img = gr.Image(type="pil", visible=False)
|
| 167 |
+
output_pdf = gr.File(visible=False)
|
| 168 |
+
|
| 169 |
+
check_progress_button.click(
|
| 170 |
+
fn=check_certification,
|
| 171 |
+
outputs=[output_text, output_pdf, output_img],
|
| 172 |
+
).then(
|
| 173 |
+
fn=join_finishers_org,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
return demo
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
demo = create_gradio_interface()
|
| 181 |
+
demo.launch(debug=True)
|
certificate.pdf
ADDED
|
Binary file (193 kB). View file
|
|
|
certificate_models/certificate-excellence.png
DELETED
|
Binary file (155 kB)
|
|
|
certificate_models/{certificate-completion.png → certificate.png}
RENAMED
|
File without changes
|
criteria.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Dict, List, Optional, NamedTuple, Tuple
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from huggingface_hub import HfApi
|
| 7 |
+
|
| 8 |
+
# Environment variables and constants
|
| 9 |
+
EXAM_DATASET_ID = os.getenv(
|
| 10 |
+
"EXAM_DATASET_ID", "agents-course/unit_1_quiz_student_responses"
|
| 11 |
+
)
|
| 12 |
+
CERTIFICATE_MODELS_DIR = os.getenv("CERTIFICATE_MODELS_DIR", "./certificate_models")
|
| 13 |
+
CERTIFICATE_PATH = os.path.join(CERTIFICATE_MODELS_DIR, "certificate.png")
|
| 14 |
+
|
| 15 |
+
PASSING_THRESHOLD = float(os.getenv("PASSING_THRESHOLD", "0.8")) # 80%
|
| 16 |
+
MIN_QUESTIONS = int(os.getenv("MIN_QUESTIONS", "1"))
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class CertificateResult(NamedTuple):
|
| 20 |
+
"""Stores the result of a certificate check"""
|
| 21 |
+
|
| 22 |
+
message: str
|
| 23 |
+
certificate_path: Optional[str]
|
| 24 |
+
pass_percentage: float
|
| 25 |
+
passed: bool
|
| 26 |
+
results_df: Optional[object] = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_user_results(username: str) -> List[Dict]:
|
| 30 |
+
"""
|
| 31 |
+
Get user's quiz results from the dataset.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
username: The Hugging Face username to check
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
List of user's quiz results
|
| 38 |
+
"""
|
| 39 |
+
try:
|
| 40 |
+
ds = load_dataset(EXAM_DATASET_ID, split="train")
|
| 41 |
+
|
| 42 |
+
# Filter for this user's results
|
| 43 |
+
user_results = ds.filter(lambda x: x["username"] == username)
|
| 44 |
+
|
| 45 |
+
results = user_results.to_list()
|
| 46 |
+
print(f"Found {len(results)} results for user {username}")
|
| 47 |
+
return results
|
| 48 |
+
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error in get_user_results: {str(e)}")
|
| 51 |
+
raise
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def calculate_pass_percentage(results: List[Dict]) -> Tuple[float, int]:
|
| 55 |
+
"""
|
| 56 |
+
Calculate the user's pass percentage and number of questions from their results.
|
| 57 |
+
|
| 58 |
+
The dataset structure has:
|
| 59 |
+
- is_correct: bool indicating if answer was correct
|
| 60 |
+
- grade: float64 indicating overall grade
|
| 61 |
+
- datetime: string of attempt timestamp
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
results: List of quiz results
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
Tuple of (highest grade achieved, number of questions answered)
|
| 68 |
+
"""
|
| 69 |
+
try:
|
| 70 |
+
if not results:
|
| 71 |
+
return 0.0, 0
|
| 72 |
+
|
| 73 |
+
# Group results by datetime to get distinct attempts
|
| 74 |
+
attempts = {}
|
| 75 |
+
for result in results:
|
| 76 |
+
timestamp = result["datetime"]
|
| 77 |
+
if timestamp not in attempts:
|
| 78 |
+
attempts[timestamp] = {
|
| 79 |
+
"correct": 0,
|
| 80 |
+
"total": 0,
|
| 81 |
+
"grade": result.get("grade", 0.0),
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
attempts[timestamp]["total"] += 1
|
| 85 |
+
if result["is_correct"]:
|
| 86 |
+
attempts[timestamp]["correct"] += 1
|
| 87 |
+
|
| 88 |
+
# Find the best attempt
|
| 89 |
+
best_attempt = max(
|
| 90 |
+
attempts.values(),
|
| 91 |
+
key=lambda x: x["grade"]
|
| 92 |
+
if x["grade"] is not None
|
| 93 |
+
else (x["correct"] / x["total"] if x["total"] > 0 else 0),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# If grade is available, use it; otherwise calculate from correct/total
|
| 97 |
+
if best_attempt["grade"] is not None and best_attempt["grade"] > 0:
|
| 98 |
+
pass_percentage = float(best_attempt["grade"])
|
| 99 |
+
else:
|
| 100 |
+
pass_percentage = (
|
| 101 |
+
best_attempt["correct"] / best_attempt["total"]
|
| 102 |
+
if best_attempt["total"] > 0
|
| 103 |
+
else 0.0
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
return pass_percentage, best_attempt["total"]
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Error in calculate_pass_percentage: {str(e)}")
|
| 110 |
+
raise
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def has_passed(pass_percentage: float, num_questions: int) -> bool:
|
| 114 |
+
"""
|
| 115 |
+
Check if user has passed based on percentage and minimum questions.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
pass_percentage: User's highest quiz score
|
| 119 |
+
num_questions: Number of questions answered
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
Boolean indicating if user passed
|
| 123 |
+
"""
|
| 124 |
+
return pass_percentage >= PASSING_THRESHOLD and num_questions >= MIN_QUESTIONS
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def get_certificate_result(
|
| 128 |
+
pass_percentage: float, num_questions: int
|
| 129 |
+
) -> CertificateResult:
|
| 130 |
+
"""
|
| 131 |
+
Determine if user passed and create appropriate message.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
pass_percentage: User's highest quiz score
|
| 135 |
+
num_questions: Number of questions answered
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
CertificateResult with pass status and details
|
| 139 |
+
"""
|
| 140 |
+
passed = has_passed(pass_percentage, num_questions)
|
| 141 |
+
|
| 142 |
+
if passed:
|
| 143 |
+
return CertificateResult(
|
| 144 |
+
message="""
|
| 145 |
+
Congratulations, you successfully completed the course! 🎉 \n
|
| 146 |
+
You can download your certificate below ⬇️ \n
|
| 147 |
+
You are now an <a href="https://huggingface.co/agents-course-finishers">Agent Course Finisher</a>!
|
| 148 |
+
""",
|
| 149 |
+
certificate_path=CERTIFICATE_PATH,
|
| 150 |
+
pass_percentage=pass_percentage,
|
| 151 |
+
passed=True,
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
return CertificateResult(
|
| 155 |
+
message="""
|
| 156 |
+
You haven't completed all the requirements yet. \n
|
| 157 |
+
Keep trying! 💪
|
| 158 |
+
""",
|
| 159 |
+
certificate_path=None,
|
| 160 |
+
pass_percentage=pass_percentage,
|
| 161 |
+
passed=False,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def check_certification(username: str) -> CertificateResult:
|
| 166 |
+
"""
|
| 167 |
+
Check if a user has completed the certification requirements.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
username: The Hugging Face username to check
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
CertificateResult containing pass status and details
|
| 174 |
+
"""
|
| 175 |
+
try:
|
| 176 |
+
# Get user's quiz results
|
| 177 |
+
results = get_user_results(username)
|
| 178 |
+
if not results:
|
| 179 |
+
return CertificateResult(
|
| 180 |
+
message="No quiz results found. Please complete the quiz first.",
|
| 181 |
+
certificate_path=None,
|
| 182 |
+
pass_percentage=0.0,
|
| 183 |
+
passed=False,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Calculate pass percentage and get appropriate certificate result
|
| 187 |
+
pass_percentage, num_questions = calculate_pass_percentage(results)
|
| 188 |
+
return get_certificate_result(pass_percentage, num_questions)
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
error_msg = """
|
| 192 |
+
There was an error checking your certification status.
|
| 193 |
+
Please try again later or contact support if the issue persists.
|
| 194 |
+
"""
|
| 195 |
+
return CertificateResult(
|
| 196 |
+
message=error_msg,
|
| 197 |
+
certificate_path=None,
|
| 198 |
+
pass_percentage=0.0,
|
| 199 |
+
passed=False,
|
| 200 |
+
)
|
org.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
# Remove unused import
|
| 5 |
+
# Break long URL into multiple lines using parentheses
|
| 6 |
+
JOIN_ORG_URL = (
|
| 7 |
+
os.getenv("JOIN_ORG_URL")
|
| 8 |
+
or "https://huggingface.co/organizations/agents-course-finishers/share/"
|
| 9 |
+
"XmxAybhNLOogLeBzZnBUVbazpTlDETqFId"
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def join_finishers_org():
|
| 14 |
+
"""Join the finishers organization using the provided auth cookie.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
user_auth_cookie (str): User's authentication cookie
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
bool: True if join was successful, False otherwise
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
# If you need to include a cookie for authentication, you can do so here
|
| 24 |
+
# Otherwise, you can leave the headers empty
|
| 25 |
+
headers = {
|
| 26 |
+
# "Cookie": "session=abc123def456ghi789jkl012mno345pqr678" # Uncomment and add your cookie if needed
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# Send the POST request
|
| 30 |
+
response = requests.post(url=JOIN_ORG_URL, headers=headers)
|
| 31 |
+
|
| 32 |
+
# Check the response status code
|
| 33 |
+
if response.status_code == 200:
|
| 34 |
+
print("Successfully joined the organization!")
|
| 35 |
+
else:
|
| 36 |
+
print(f"Failed to join the organization. Status code: {response.status_code}")
|
| 37 |
+
|
| 38 |
+
|
pyproject.toml
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "certification-app"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.11"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"datasets>=3.2.0",
|
| 9 |
+
"gradio[oauth]==5.15.0",
|
| 10 |
+
"huggingface-hub>=0.28.1",
|
| 11 |
+
"pandas>=2.2.3",
|
| 12 |
+
"pillow>=11.1.0",
|
| 13 |
+
]
|
utils.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
| 1 |
-
# Based on Omar Sanseviero work
|
| 2 |
-
# Make model clickable link
|
| 3 |
-
def make_clickable_model(model_name):
|
| 4 |
-
# remove user from model name
|
| 5 |
-
model_name_show = ' '.join(model_name.split('/')[1:])
|
| 6 |
-
|
| 7 |
-
link = "https://huggingface.co/" + model_name
|
| 8 |
-
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 9 |
-
|
| 10 |
-
def pass_emoji(passed):
|
| 11 |
-
print("PASSED", passed)
|
| 12 |
-
if passed is True:
|
| 13 |
-
passed = "✅"
|
| 14 |
-
else:
|
| 15 |
-
passed = "❌"
|
| 16 |
-
return passed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|