Upload 4 files
Browse files- Conv_GPT.pth +3 -0
- app.py +56 -0
- model.py +93 -0
- requirements.txt +4 -0
Conv_GPT.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d07006505c691bae29120861fbc9dfe9ad3b75d4964e38b8445020991d4d6b17
|
3 |
+
size 358490096
|
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer
|
4 |
+
from model import TransformerModel
|
5 |
+
|
6 |
+
# Load tokenizer
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
8 |
+
tokenizer.pad_token = tokenizer.eos_token
|
9 |
+
|
10 |
+
# Load model
|
11 |
+
model = TransformerModel(
|
12 |
+
vocab_size=tokenizer.vocab_size,
|
13 |
+
hidden_size=512,
|
14 |
+
num_layers=12,
|
15 |
+
num_heads=16,
|
16 |
+
dropout=0.1
|
17 |
+
)
|
18 |
+
model.load_state_dict(torch.load("Conv_GPT.pth", map_location=torch.device('cpu')))
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
# Define generation function
|
22 |
+
def generate_text(prompt, max_new_tokens=50):
|
23 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
24 |
+
# Ensure input sequence length does not exceed 512 (model's max_seq_len)
|
25 |
+
if input_ids.size(1) > 512:
|
26 |
+
input_ids = input_ids[:, :512]
|
27 |
+
generated_ids = input_ids
|
28 |
+
with torch.no_grad():
|
29 |
+
for _ in range(max_new_tokens):
|
30 |
+
logits = model(generated_ids)
|
31 |
+
next_token = torch.argmax(logits[:, -1, :], dim=-1).unsqueeze(0)
|
32 |
+
generated_ids = torch.cat([generated_ids, next_token], dim=1)
|
33 |
+
# Truncate if exceeding 512 tokens
|
34 |
+
if generated_ids.size(1) > 512:
|
35 |
+
generated_ids = generated_ids[:, -512:]
|
36 |
+
if tokenizer.decode(next_token.item()) == '\n':
|
37 |
+
break
|
38 |
+
return tokenizer.decode(generated_ids[0, len(input_ids[0]):]).strip()
|
39 |
+
|
40 |
+
# Chat function for Gradio
|
41 |
+
def chat(message, history):
|
42 |
+
prompt = f"User: {message}\nAssistant:"
|
43 |
+
response = generate_text(prompt)
|
44 |
+
return response
|
45 |
+
|
46 |
+
# Create Gradio interface
|
47 |
+
interface = gr.ChatInterface(
|
48 |
+
fn=chat,
|
49 |
+
title="Conv_GPT Chatbot",
|
50 |
+
description="Chat with Conv_GPT, a custom transformer trained on DailyDialog! Enter your message below.",
|
51 |
+
theme="default",
|
52 |
+
examples=["Hi, how are you?", "What's your favorite food?", "Tell me about your day."]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Launch the app
|
56 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
model.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import math
|
5 |
+
|
6 |
+
class MultiHeadSelfAttention(nn.Module):
|
7 |
+
def __init__(self, hidden_size, num_heads, dropout=0.1):
|
8 |
+
super().__init__()
|
9 |
+
assert hidden_size % num_heads == 0, "hidden_size must be divisible by num_heads"
|
10 |
+
self.hidden_size = hidden_size
|
11 |
+
self.num_heads = num_heads
|
12 |
+
self.head_dim = hidden_size // num_heads
|
13 |
+
|
14 |
+
self.query = nn.Linear(hidden_size, hidden_size)
|
15 |
+
self.key = nn.Linear(hidden_size, hidden_size)
|
16 |
+
self.value = nn.Linear(hidden_size, hidden_size)
|
17 |
+
self.out = nn.Linear(hidden_size, hidden_size)
|
18 |
+
|
19 |
+
self.dropout = nn.Dropout(dropout)
|
20 |
+
self.scale = math.sqrt(self.head_dim)
|
21 |
+
|
22 |
+
def forward(self, x, mask=None, padding_mask=None):
|
23 |
+
batch_size, seq_len, _ = x.size()
|
24 |
+
|
25 |
+
q = self.query(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
26 |
+
k = self.key(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
27 |
+
v = self.value(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
28 |
+
|
29 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / self.scale
|
30 |
+
|
31 |
+
if mask is not None:
|
32 |
+
scores = scores.masked_fill(mask == 1, -1e4) # Adjusted for FP16 compatibility
|
33 |
+
if padding_mask is not None:
|
34 |
+
padding_mask = padding_mask.unsqueeze(1).unsqueeze(2)
|
35 |
+
scores = scores.masked_fill(padding_mask, -1e4) # Adjusted for FP16 compatibility
|
36 |
+
|
37 |
+
attn = torch.softmax(scores, dim=-1)
|
38 |
+
attn = self.dropout(attn)
|
39 |
+
|
40 |
+
out = torch.matmul(attn, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
41 |
+
out = self.out(out)
|
42 |
+
return out
|
43 |
+
|
44 |
+
class TransformerLayer(nn.Module):
|
45 |
+
def __init__(self, hidden_size, num_heads, dropout=0.1):
|
46 |
+
super().__init__()
|
47 |
+
self.attn = MultiHeadSelfAttention(hidden_size, num_heads, dropout)
|
48 |
+
self.ffn = nn.Sequential(
|
49 |
+
nn.Linear(hidden_size, 4 * hidden_size),
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Linear(4 * hidden_size, hidden_size),
|
52 |
+
nn.Dropout(dropout)
|
53 |
+
)
|
54 |
+
self.ln1 = nn.LayerNorm(hidden_size)
|
55 |
+
self.ln2 = nn.LayerNorm(hidden_size)
|
56 |
+
self.dropout = nn.Dropout(dropout)
|
57 |
+
|
58 |
+
def forward(self, x, mask=None, padding_mask=None):
|
59 |
+
x = self.ln1(x)
|
60 |
+
attn_out = self.attn(x, mask, padding_mask)
|
61 |
+
x = x + self.dropout(attn_out)
|
62 |
+
|
63 |
+
x = self.ln2(x)
|
64 |
+
ffn_out = self.ffn(x)
|
65 |
+
x = x + self.dropout(ffn_out)
|
66 |
+
return x
|
67 |
+
|
68 |
+
class TransformerModel(nn.Module):
|
69 |
+
def __init__(self, vocab_size, hidden_size=512, num_layers=6, num_heads=8, dropout=0.1):
|
70 |
+
super().__init__()
|
71 |
+
self.token_embedding = nn.Embedding(vocab_size, hidden_size)
|
72 |
+
self.pos_embedding = nn.Embedding(512, hidden_size) # Fixed max_seq_len=512
|
73 |
+
self.layers = nn.ModuleList([
|
74 |
+
TransformerLayer(hidden_size, num_heads, dropout) for _ in range(num_layers)
|
75 |
+
])
|
76 |
+
self.final_ln = nn.LayerNorm(hidden_size)
|
77 |
+
self.head = nn.Linear(hidden_size, vocab_size)
|
78 |
+
self.dropout = nn.Dropout(dropout)
|
79 |
+
|
80 |
+
def forward(self, input_ids, padding_mask=None):
|
81 |
+
batch_size, seq_len = input_ids.size()
|
82 |
+
positions = torch.arange(0, seq_len, device=input_ids.device).unsqueeze(0).expand_as(input_ids)
|
83 |
+
x = self.token_embedding(input_ids) + self.pos_embedding(positions)
|
84 |
+
x = self.dropout(x)
|
85 |
+
|
86 |
+
causal_mask = torch.triu(torch.ones(seq_len, seq_len, device=input_ids.device), diagonal=1).bool()
|
87 |
+
|
88 |
+
for layer in self.layers:
|
89 |
+
x = layer(x, causal_mask, padding_mask)
|
90 |
+
|
91 |
+
x = self.final_ln(x)
|
92 |
+
logits = self.head(x)
|
93 |
+
return logits
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
huggingface_hub
|