File size: 560 Bytes
fdf0262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
Compare your experiments with Aim on Spaces
Let's use a quick example of a PyTorch CNN trained on MNIST to demonstrate end-to-end Aim on Spaces deployment. The full example is in the Aim repo examples folder.
from aim import Run
from aim.pytorch import track_gradients_dists, track_params_dists
# Initialize a new Run
aim_run = Run()
...
items = {'accuracy': acc, 'loss': loss}
aim_run.track(items, epoch=epoch, context={'subset': 'train'})
# Track weights and gradients distributions
track_params_dists(model, aim_run)
track_gradients_dists(model, aim_run) |