Spaces:
Runtime error
Runtime error
Commit
·
1272949
1
Parent(s):
d228b46
Add OpenCLIP embedding generator app and dependencies
Browse files- .gitignore +23 -0
- app.py +168 -0
- requirements.txt +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python virtual environment
|
| 2 |
+
venv/
|
| 3 |
+
.venv/
|
| 4 |
+
|
| 5 |
+
# Compiled Python files
|
| 6 |
+
*.pyc
|
| 7 |
+
|
| 8 |
+
# Logs
|
| 9 |
+
*.log
|
| 10 |
+
|
| 11 |
+
# Gradio app output files
|
| 12 |
+
output/
|
| 13 |
+
flagged/
|
| 14 |
+
|
| 15 |
+
# IDE and editor files
|
| 16 |
+
.vscode/
|
| 17 |
+
.idea/
|
| 18 |
+
*.iml
|
| 19 |
+
|
| 20 |
+
# Dependency directories
|
| 21 |
+
__pycache__/
|
| 22 |
+
dist/
|
| 23 |
+
build/
|
app.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from numpy import empty
|
| 3 |
+
import open_clip
|
| 4 |
+
from regex import F
|
| 5 |
+
import torch
|
| 6 |
+
import json
|
| 7 |
+
import PIL
|
| 8 |
+
|
| 9 |
+
# Set device to GPU if available
|
| 10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
+
|
| 12 |
+
# Load the OpenCLIP model and the necessary preprocessors
|
| 13 |
+
# openclip_model = 'laion/CLIP-ViT-B-32-laion2B-s34B-b79K'
|
| 14 |
+
# openclip_model = 'laion/CLIP-ViT-B-16-laion2B-s34B-b88K'
|
| 15 |
+
openclip_model = 'laion/CLIP-ViT-L-14-laion2B-s32B-b82K'
|
| 16 |
+
openclip_model = 'hf-hub:' + openclip_model
|
| 17 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(
|
| 18 |
+
model_name=openclip_model,
|
| 19 |
+
device=device
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def generate_embedding(text_data, image_data):
|
| 24 |
+
"""
|
| 25 |
+
Generate embeddings for text and image data using the OpenCLIP model.
|
| 26 |
+
|
| 27 |
+
Parameters
|
| 28 |
+
----------
|
| 29 |
+
text_data : str or tuple of str
|
| 30 |
+
Text data to embed.
|
| 31 |
+
image_data : PIL.Image.Image or tuple of PIL.Image.Image
|
| 32 |
+
Image data to embed.
|
| 33 |
+
|
| 34 |
+
Returns
|
| 35 |
+
-------
|
| 36 |
+
text_embeddings : list of str
|
| 37 |
+
List of text embeddings.
|
| 38 |
+
image_embeddings : list of str
|
| 39 |
+
List of image embeddings.
|
| 40 |
+
similarity : list of str
|
| 41 |
+
List of cosine similarity between text and image embeddings.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
# Embed text data
|
| 45 |
+
text_embeddings = []
|
| 46 |
+
empty_text_indices = []
|
| 47 |
+
if text_data:
|
| 48 |
+
# If text_data is a string, convert to list of strings
|
| 49 |
+
if isinstance(text_data, str):
|
| 50 |
+
text_data = [text_data]
|
| 51 |
+
|
| 52 |
+
# If text_data is a tuple of strings, convert to list of strings
|
| 53 |
+
if isinstance(text_data, tuple):
|
| 54 |
+
text_data = list(text_data)
|
| 55 |
+
|
| 56 |
+
# Keep track of indices of empty text strings
|
| 57 |
+
empty_text_indices = [i for i, text in enumerate(text_data) if text == ""]
|
| 58 |
+
|
| 59 |
+
# Remove empty text strings
|
| 60 |
+
text_data = [text for text in text_data if text != ""]
|
| 61 |
+
|
| 62 |
+
if text_data:
|
| 63 |
+
# Tokenize text_data and convert to tensor
|
| 64 |
+
text_data = open_clip.tokenize(text_data).to(device)
|
| 65 |
+
|
| 66 |
+
# Generate text embeddings
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
text_embeddings = model.encode_text(text_data)
|
| 69 |
+
|
| 70 |
+
# Convert embeddings to list of strings
|
| 71 |
+
text_embeddings = [embedding.detach().cpu().numpy().tolist() for embedding in text_embeddings]
|
| 72 |
+
|
| 73 |
+
# Insert empty strings at indices of empty text strings
|
| 74 |
+
for i in empty_text_indices:
|
| 75 |
+
text_embeddings.insert(i, "")
|
| 76 |
+
|
| 77 |
+
# Embed image data
|
| 78 |
+
image_embeddings = []
|
| 79 |
+
empty_image_indices = []
|
| 80 |
+
if image_data:
|
| 81 |
+
# If image_data is a single PIL image, convert to list of PIL images
|
| 82 |
+
if isinstance(image_data, PIL.Image.Image):
|
| 83 |
+
image_data = [image_data]
|
| 84 |
+
|
| 85 |
+
# If image_data is a tuple of images, convert to list of images
|
| 86 |
+
if isinstance(image_data, tuple):
|
| 87 |
+
image_data = list(image_data)
|
| 88 |
+
|
| 89 |
+
# Keep track of indices of None images
|
| 90 |
+
empty_image_indices = [i for i, img in enumerate(image_data) if img is None]
|
| 91 |
+
|
| 92 |
+
# Remove None images
|
| 93 |
+
image_data = [img for img in image_data if img is not None]
|
| 94 |
+
|
| 95 |
+
if image_data:
|
| 96 |
+
# Preprocess image_data and convert to tensor
|
| 97 |
+
image_data = [preprocess_val(img).unsqueeze(0) for img in image_data]
|
| 98 |
+
image_data = torch.stack(image_data).squeeze(1).to(device)
|
| 99 |
+
|
| 100 |
+
# Generate image embeddings
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
image_embeddings = model.encode_image(image_data)
|
| 103 |
+
|
| 104 |
+
# Convert embeddings to list of strings
|
| 105 |
+
image_embeddings = [embedding.detach().cpu().numpy().tolist() for embedding in image_embeddings]
|
| 106 |
+
|
| 107 |
+
# Insert empty strings at indices of empty images
|
| 108 |
+
for i in empty_image_indices:
|
| 109 |
+
image_embeddings.insert(i, "")
|
| 110 |
+
|
| 111 |
+
# Calculate cosine similarity between text and image embeddings
|
| 112 |
+
similarity = []
|
| 113 |
+
empty_similarity_indices = []
|
| 114 |
+
if text_embeddings and image_embeddings:
|
| 115 |
+
# Filter out embedding pairs with either empty text or image embeddings, tracking indices of empty embeddings
|
| 116 |
+
text_embeddings_filtered = []
|
| 117 |
+
image_embeddings_filtered = []
|
| 118 |
+
for i, (text_embedding, image_embedding) in enumerate(zip(text_embeddings, image_embeddings)):
|
| 119 |
+
if text_embedding != "" and image_embedding != "":
|
| 120 |
+
text_embeddings_filtered.append(text_embedding)
|
| 121 |
+
image_embeddings_filtered.append(image_embedding)
|
| 122 |
+
else:
|
| 123 |
+
empty_similarity_indices.append(i)
|
| 124 |
+
|
| 125 |
+
# Calculate cosine similarity if there are any non-empty embedding pairs
|
| 126 |
+
if image_embeddings_filtered and text_embeddings_filtered:
|
| 127 |
+
# Convert lists back to tensors for processing
|
| 128 |
+
text_embeddings_tensor = torch.tensor(text_embeddings_filtered)
|
| 129 |
+
image_embeddings_tensor = torch.tensor(image_embeddings_filtered)
|
| 130 |
+
|
| 131 |
+
# Normalize the embeddings
|
| 132 |
+
text_embedding_norm = text_embeddings_tensor / text_embeddings_tensor.norm(dim=-1, keepdim=True)
|
| 133 |
+
image_embedding_norm = image_embeddings_tensor / image_embeddings_tensor.norm(dim=-1, keepdim=True)
|
| 134 |
+
|
| 135 |
+
# Calculate cosine similarity
|
| 136 |
+
similarity = torch.nn.functional.cosine_similarity(text_embedding_norm, image_embedding_norm, dim=-1)
|
| 137 |
+
# Convert to percentage as text
|
| 138 |
+
similarity = [f"{sim.item() * 100:.2f}%" for sim in similarity]
|
| 139 |
+
|
| 140 |
+
# Insert empty text strings in similarity
|
| 141 |
+
for i in empty_similarity_indices:
|
| 142 |
+
similarity.insert(i, "")
|
| 143 |
+
|
| 144 |
+
return (text_embeddings, image_embeddings, similarity)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# Define Gradio interface
|
| 148 |
+
demo = gr.Interface(
|
| 149 |
+
fn=generate_embedding,
|
| 150 |
+
inputs=[
|
| 151 |
+
gr.Textbox(lines=5, max_lines=5, placeholder="Enter Text Here...", label="Text to Embed"),
|
| 152 |
+
gr.Image(height=512, type="pil", label="Image to Embed")
|
| 153 |
+
],
|
| 154 |
+
outputs=[
|
| 155 |
+
gr.Textbox(lines=5, max_lines=5, label="Text Embedding", autoscroll=False),
|
| 156 |
+
gr.Textbox(lines=5, max_lines=5, label="Image Embedding", autoscroll=False),
|
| 157 |
+
gr.Textbox(label="Cosine Similarity")
|
| 158 |
+
],
|
| 159 |
+
title="OpenCLIP Embedding Generator",
|
| 160 |
+
description="Generate embeddings using OpenCLIP model for text and images.",
|
| 161 |
+
allow_flagging="never",
|
| 162 |
+
batch=True,
|
| 163 |
+
api_name="embed"
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Enable queueing and launch the app
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
demo.queue().launch(show_api=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
open_clip_torch
|
| 3 |
+
torch
|