Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import tensorflow as tf | |
from flask import Flask, request, render_template, jsonify | |
from tensorflow.keras.utils import load_img, img_to_array | |
from werkzeug.utils import secure_filename | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download # New import! | |
import time | |
app = Flask(__name__) | |
# --- Model Loading Configuration --- | |
MODEL_FILE_NAME = "model.keras" | |
# REPLACE THIS WITH YOUR HUGGING FACE MODEL REPO ID | |
# Format: "your-username/your-model-repo-name" | |
HF_MODEL_REPO_ID = "nonamelife/garbage-detection-model" # Example! | |
# Check if model exists, if not, try to download it from Hugging Face Hub | |
if not os.path.exists(MODEL_FILE_NAME): | |
print(f"'{MODEL_FILE_NAME}' not found locally. Attempting to download from Hugging Face Hub...") | |
try: | |
# Download the model from Hugging Face Hub | |
# The downloaded file will be in a cache directory by default, | |
# so we'll move it to the current directory for easier loading. | |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=MODEL_FILE_NAME) | |
# Move the downloaded file to the root directory for app.py to find it easily | |
os.rename(model_path, MODEL_FILE_NAME) | |
print(f"'{MODEL_FILE_NAME}' downloaded successfully from Hugging Face Hub.") | |
except Exception as e: | |
print(f"FATAL: Could not download model from Hugging Face Hub: {e}") | |
# If download fails, the model will remain None, and prediction attempts will fail. | |
model = None | |
# Load the trained model | |
model = None # Initialize model to None | |
try: | |
if os.path.exists(MODEL_FILE_NAME): | |
model = tf.keras.models.load_model(MODEL_FILE_NAME) | |
print(f"Model loaded successfully from {MODEL_FILE_NAME}") | |
else: | |
print(f"Model file '{MODEL_FILE_NAME}' still not found after download attempt.") | |
except Exception as e: | |
print(f"Error loading model from {MODEL_FILE_NAME}: {e}") | |
model = None # Ensure model is None if loading fails | |
# Configurations | |
UPLOAD_FOLDER = os.path.join('static', 'uploads') | |
ALLOWED_EXTENSIONS = {'jpg', 'jpeg', 'png'} | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure uploads directory exists | |
def allowed_file(filename): | |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS | |
def preprocess_image(image_path): | |
img = load_img(image_path, target_size=(224, 224)) | |
img_array = img_to_array(img) / 255.0 | |
return np.expand_dims(img_array, axis=0) | |
def index(): | |
return render_template('home.html') | |
def tool(): | |
return render_template('tool.html') | |
def about(): | |
return render_template('about.html') | |
def contact(): | |
return render_template('contact.html') | |
def predict(): | |
if model is None: | |
return jsonify({'error': 'Model not loaded. Please check server logs.'}), 500 | |
if 'file' not in request.files: | |
return jsonify({'error': 'No files uploaded'}), 400 | |
files = request.files.getlist('file') | |
if not files or all(f.filename == '' for f in files): | |
return jsonify({'error': 'No files selected'}), 400 | |
results = [] | |
for file in files: | |
file_path = None | |
if file and allowed_file(file.filename): | |
filename = secure_filename(file.filename) | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") | |
unique_filename = f"{timestamp}_{filename}" | |
file_path = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename) | |
file.save(file_path) | |
try: | |
img_array = preprocess_image(file_path) | |
prediction = model.predict(img_array)[0][0] | |
label = "Dirty" if prediction > 0.5 else "Clean" | |
confidence = prediction if label == "Dirty" else 1 - prediction | |
results.append({ | |
'label': label, | |
'confidence': f"{confidence:.2%}", | |
'image_url': f"/static/uploads/{unique_filename}" | |
}) | |
except Exception as e: | |
results.append({ | |
'label': 'Error', | |
'confidence': 'N/A', | |
'image_url': None, | |
'error': str(e) | |
}) | |
finally: | |
# Clean up the uploaded file after processing | |
if file_path and os.path.exists(file_path): | |
try: | |
os.remove(file_path) | |
print(f"Deleted uploaded file: {file_path}") | |
except Exception as e: | |
print(f"Error deleting file {file_path}: {e}") | |
else: | |
results.append({ | |
'label': 'Error', | |
'confidence': 'N/A', | |
'image_url': None, | |
'error': f"Invalid file type: {file.filename}" | |
}) | |
return render_template('results.html', results=results) | |
if __name__ == '__main__': | |
# Hugging Face Spaces sets the PORT environment variable | |
# Default to 7860 as it's common for HF Spaces apps | |
port = int(os.environ.get('PORT', 7860)) | |
app.run(host='0.0.0.0', port=port, debug=True) |