Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import tensorflow as tf | |
from flask import Flask, request, render_template, jsonify | |
from tensorflow.keras.utils import load_img, img_to_array | |
from werkzeug.utils import secure_filename | |
from datetime import datetime | |
app = Flask(__name__) | |
# Load the trained model | |
MODEL_PATH = r"model.keras" # Update to correct path | |
model = tf.keras.models.load_model(MODEL_PATH) | |
# Configurations | |
UPLOAD_FOLDER = os.path.join('static', 'uploads') | |
ALLOWED_EXTENSIONS = {'jpg', 'jpeg', 'png'} | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
def allowed_file(filename): | |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS | |
def preprocess_image(image_path): | |
img = load_img(image_path, target_size=(224, 224)) | |
img_array = img_to_array(img) / 255.0 | |
return np.expand_dims(img_array, axis=0) | |
def index(): | |
return render_template('home.html') | |
def tool(): | |
return render_template('tool.html') | |
def about(): | |
return render_template('about.html') | |
def contact(): | |
return render_template('contact.html') | |
def predict(): | |
if 'file' not in request.files: | |
return jsonify({'error': 'No files uploaded'}), 400 | |
files = request.files.getlist('file') | |
if not files or all(f.filename == '' for f in files): | |
return jsonify({'error': 'No files selected'}), 400 | |
results = [] | |
for file in files: | |
if file and allowed_file(file.filename): | |
filename = secure_filename(file.filename) | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") | |
unique_filename = f"{timestamp}_{filename}" | |
file_path = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename) | |
file.save(file_path) | |
try: | |
img_array = preprocess_image(file_path) | |
prediction = model.predict(img_array)[0][0] | |
label = "Dirty" if prediction > 0.5 else "Clean" | |
confidence = prediction if label == "Dirty" else 1 - prediction | |
results.append({ | |
'label': label, | |
'confidence': f"{confidence:.2%}", | |
'image_url': f"/static/uploads/{unique_filename}" | |
}) | |
except Exception as e: | |
results.append({ | |
'label': 'Error', | |
'confidence': 'N/A', | |
'image_url': None, | |
'error': str(e) | |
}) | |
else: | |
results.append({ | |
'label': 'Error', | |
'confidence': 'N/A', | |
'image_url': None, | |
'error': f"Invalid file type: {file.filename}" | |
}) | |
# Render a results page and pass results into it | |
return render_template('results.html', results=results) | |
if __name__ == '__main__': | |
app.run(debug=True) | |