import os import numpy as np import tensorflow as tf from flask import Flask, request, render_template, jsonify from tensorflow.keras.utils import load_img, img_to_array from werkzeug.utils import secure_filename from datetime import datetime app = Flask(__name__) # Load the trained model MODEL_PATH = r"model.keras" # Update to correct path model = tf.keras.models.load_model(MODEL_PATH) # Configurations UPLOAD_FOLDER = os.path.join('static', 'uploads') ALLOWED_EXTENSIONS = {'jpg', 'jpeg', 'png'} app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER os.makedirs(UPLOAD_FOLDER, exist_ok=True) def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS def preprocess_image(image_path): img = load_img(image_path, target_size=(224, 224)) img_array = img_to_array(img) / 255.0 return np.expand_dims(img_array, axis=0) @app.route('/') def index(): return render_template('home.html') @app.route('/tool') def tool(): return render_template('tool.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/contact') def contact(): return render_template('contact.html') @app.route('/predict', methods=['POST']) def predict(): if 'file' not in request.files: return jsonify({'error': 'No files uploaded'}), 400 files = request.files.getlist('file') if not files or all(f.filename == '' for f in files): return jsonify({'error': 'No files selected'}), 400 results = [] for file in files: if file and allowed_file(file.filename): filename = secure_filename(file.filename) timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f") unique_filename = f"{timestamp}_{filename}" file_path = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename) file.save(file_path) try: img_array = preprocess_image(file_path) prediction = model.predict(img_array)[0][0] label = "Dirty" if prediction > 0.5 else "Clean" confidence = prediction if label == "Dirty" else 1 - prediction results.append({ 'label': label, 'confidence': f"{confidence:.2%}", 'image_url': f"/static/uploads/{unique_filename}" }) except Exception as e: results.append({ 'label': 'Error', 'confidence': 'N/A', 'image_url': None, 'error': str(e) }) else: results.append({ 'label': 'Error', 'confidence': 'N/A', 'image_url': None, 'error': f"Invalid file type: {file.filename}" }) # Render a results page and pass results into it return render_template('results.html', results=results) if __name__ == '__main__': app.run(debug=True)