|
import os |
|
import torch |
|
import numpy as np |
|
from rrdbnet_arch import RRDBNet |
|
from torch.nn import functional as F |
|
import torch |
|
|
|
|
|
class RealESRNet(object): |
|
def __init__(self, base_dir=os.path.dirname(__file__), model=None, scale=2): |
|
self.base_dir = base_dir |
|
self.scale = scale |
|
self.load_srmodel(base_dir, model) |
|
self.srmodel_trt = None |
|
|
|
def load_srmodel(self, base_dir, model): |
|
self.scale = 2 if "x2" in model else 4 if "x4" in model else -1 |
|
if self.scale == -1: |
|
raise Exception("Scale not supported") |
|
self.srmodel = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=32, num_block=23, num_grow_ch=32, scale=self.scale) |
|
if model is None: |
|
loadnet = torch.load(os.path.join(self.base_dir, 'weights', 'realesrnet_x2.pth')) |
|
else: |
|
loadnet = torch.load(os.path.join(self.base_dir, 'weights', model+'.pth')) |
|
self.srmodel.load_state_dict(loadnet['params_ema'], strict=True) |
|
self.srmodel.eval() |
|
self.srmodel = self.srmodel.cuda() |
|
|
|
def build_trt(self, img): |
|
img = img.astype(np.float32) / 255. |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
img = img.unsqueeze(0).cuda() |
|
print('building trt model srmodel') |
|
from torch2trt import torch2trt |
|
self.srmodel_trt = torch2trt(self.srmodel, [img], fp16_mode=True) |
|
print('sucessfully built') |
|
del self.srmodel |
|
|
|
def process_trt(self, img): |
|
img = img.astype(np.float32) / 255. |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
img = img.unsqueeze(0).cuda() |
|
|
|
if self.scale == 2: |
|
mod_scale = 2 |
|
elif self.scale == 1: |
|
mod_scale = 4 |
|
else: |
|
mod_scale = None |
|
if mod_scale is not None: |
|
h_pad, w_pad = 0, 0 |
|
_, _, h, w = img.size() |
|
if (h % mod_scale != 0): |
|
h_pad = (mod_scale - h % mod_scale) |
|
if (w % mod_scale != 0): |
|
w_pad = (mod_scale - w % mod_scale) |
|
img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect') |
|
try: |
|
with torch.no_grad(): |
|
output = self.srmodel_trt(img) |
|
|
|
if mod_scale is not None: |
|
_, _, h, w = output.size() |
|
output = output[:, :, 0:h - h_pad, 0:w - w_pad] |
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
|
|
return output |
|
except: |
|
return None |
|
|
|
def process(self, img): |
|
img = img.astype(np.float32) / 255. |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
img = img.unsqueeze(0).cuda() |
|
|
|
|
|
if self.scale == 2: |
|
mod_scale = 2 |
|
elif self.scale == 1: |
|
mod_scale = 4 |
|
else: |
|
mod_scale = None |
|
if mod_scale is not None: |
|
h_pad, w_pad = 0, 0 |
|
_, _, h, w = img.size() |
|
if (h % mod_scale != 0): |
|
h_pad = (mod_scale - h % mod_scale) |
|
if (w % mod_scale != 0): |
|
w_pad = (mod_scale - w % mod_scale) |
|
img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect') |
|
try: |
|
with torch.no_grad(): |
|
output = self.srmodel(img) |
|
|
|
if mod_scale is not None: |
|
_, _, h, w = output.size() |
|
output = output[:, :, 0:h - h_pad, 0:w - w_pad] |
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
|
|
return output |
|
except: |
|
return None |
|
|
|
|