AMP-Classifier / app.py
nonzeroexit's picture
Update app.py
a359627 verified
raw
history blame
5.34 kB
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (1).joblib")
# Feature list (KEEP THIS CONSISTENT)
selected_features = [
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
"APAAC24"
]
def extract_features(sequence):
if len(sequence) < 3: # Ensure sequence is long enough
return None # Return None if sequence is too short
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
ctd_features = CTD.CalculateCTD(sequence)
try:
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
except ZeroDivisionError:
pseudo_features = {} # Ignore PseudoAAC features if they fail
all_features = {**auto_features, **ctd_features, **pseudo_features, **dipeptide_features}
# Ensure we only keep features that were used during scaler training
feature_names = list(all_features.keys()) # Extracted feature names
feature_values = np.array(list(all_features.values())).reshape(1, -1) # Reshape for scaler
if feature_values.shape[1] != 145: # Check expected feature count
print(f"Warning: Extracted {feature_values.shape[1]} features, expected 145. Skipping normalization.")
return None # Skip this sequence
# Normalize the feature values
normalized_features = scaler.transform(feature_values)
normalized_features = normalized_features.flatten()
selected_feature_dict = {feature_names[i]: normalized_features[i] for i in range(len(feature_names))}
selected_feature_df = pd.DataFrame([selected_feature_dict])
selected_feature_array = selected_feature_df.T.to_numpy()
return selected_feature_array
def predict(sequence):
"""Predicts whether the input sequence is an AMP."""
features = extract_features(sequence)
if features is None:
return "Error: Could not extract features."
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
if prediction == 0:
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
else:
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
# Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=gr.Label(label="Prediction"),
title="AMP Classifier",
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)
iface.launch(share=True)