AMP-Classifier / app.py
nonzeroexit's picture
Update app.py
febb4a6 verified
raw
history blame
15.4 kB
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from lime.lime_tabular import LimeTabularExplainer
from math import expm1
import matplotlib.pyplot as plt
import io
import base64
import os
# --- Configuration and Model Loading ---
MODEL_DIR = os.path.dirname(os.path.abspath(__file__))
# Load AMP Classifier
try:
model = joblib.load(os.path.join(MODEL_DIR, "RF.joblib"))
scaler = joblib.load(os.path.join(MODEL_DIR, "norm (4).joblib"))
except FileNotFoundError as e:
raise gr.Error(f"Classifier model or scaler not found: {e}. Make sure RF.joblib and norm (4).joblib are in the {MODEL_DIR} directory.")
except Exception as e:
raise gr.Error(f"Error loading classifier components: {e}")
# Load ProtBert
try:
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()
except Exception as e:
raise gr.Error(f"Error loading ProtBert model/tokenizer: {e}. Check internet connection or model availability.")
# Full list of selected features (as provided in the original code)
selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001",
"_PolarabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001",
"_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050",
"_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025",
"_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001",
"_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE",
"LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30",
"GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25",
"GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29",
"GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30",
"GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25",
"GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30",
"GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29",
"GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13",
"APAAC15", "APAAC18", "APAAC19", "APAAC24"]
# LIME Explainer Setup
try:
# Attempt to load a real sample data for LIME background if available
# e.g., sample_data = np.load(os.path.join(MODEL_DIR, 'sample_training_features_scaled.npy'))
sample_data = np.random.rand(500, len(selected_features)) # Fallback: Generate random sample data
except Exception:
print("Warning: Could not load pre-saved sample data for LIME. Generating random sample data.")
sample_data = np.random.rand(500, len(selected_features)) # Generate enough samples
explainer = LimeTabularExplainer(
training_data=sample_data,
feature_names=selected_features,
class_names=["AMP", "Non-AMP"], # Assuming 0 is AMP, 1 is Non-AMP as per model prediction
mode="classification"
)
# --- Feature Extraction Function ---
def extract_features(sequence: str) -> np.ndarray:
"""
Extracts biochemical and compositional features from an amino acid sequence.
Args:
sequence (str): The amino acid sequence.
Returns:
np.ndarray: A scaled 2D numpy array of selected features (1, num_features).
Raises:
gr.Error: If the sequence is invalid or feature extraction fails.
"""
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if not (10 <= len(cleaned_sequence) <= 100):
raise gr.Error(f"Invalid sequence length ({len(cleaned_sequence)}). Must be between 10 and 100 characters and contain only standard amino acids.")
try:
dipeptide_features = AAComposition.CalculateAADipeptideComposition(cleaned_sequence)
ctd_features = CTD.CalculateCTD(cleaned_sequence)
auto_features = Autocorrelation.CalculateAutoTotal(cleaned_sequence)
pseudo_features = PseudoAAC.GetAPseudoAAC(cleaned_sequence, lamda=9)
all_features_dict = {}
all_features_dict.update(ctd_features)
all_features_dict.update(dipeptide_features)
all_features_dict.update(auto_features)
all_features_dict.update(pseudo_features)
feature_df_all = pd.DataFrame([all_features_dict])
computed_features_ordered = feature_df_all.reindex(columns=selected_features, fill_value=0)
computed_features_ordered = computed_features_ordered.fillna(0)
normalized_array = scaler.transform(computed_features_ordered.values)
return normalized_array
except Exception as e:
raise gr.Error(f"Feature extraction failed: {e}. Ensure sequence is valid and Propy dependencies are met.")
# --- MIC Prediction Function ---
def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
"""
Predicts Minimum Inhibitory Concentration (MIC) for selected bacteria using ProtBert embeddings.
Args:
sequence (str): The amino acid sequence.
selected_bacteria_keys (list): List of keys for bacteria to predict MIC for (e.g., ['e_coli', 'p_aeruginosa']).
Returns:
dict: A dictionary where keys are bacterium keys and values are predicted MICs in µM.
Returns error messages for individual bacteria if prediction fails.
Raises:
gr.Error: If ProtBert embedding fails or sequence is invalid.
"""
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if not (10 <= len(cleaned_sequence) <= 100):
raise gr.Error(f"Invalid sequence length for MIC prediction ({len(cleaned_sequence)}). Must be between 10 and 100 characters.")
seq_spaced = ' '.join(list(cleaned_sequence))
try:
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
outputs = protbert_model(**tokens)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
except Exception as e:
raise gr.Error(f"Error generating ProtBert embedding: {e}. Check sequence format or model availability.")
bacteria_config = {
"e_coli": {"display_name": "E.coli", "model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None},
"p_aeruginosa": {"display_name": "P. aeruginosa", "model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None},
"s_aureus": {"display_name": "S. aureus", "model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None},
"k_pneumoniae": {"display_name": "K. pneumoniae", "model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"}
}
mic_results = {}
for bacterium_key in selected_bacteria_keys:
cfg = bacteria_config.get(bacterium_key)
if not cfg:
mic_results[bacterium_key] = "Error: Invalid bacterium key provided."
continue
try:
mic_scaler = joblib.load(os.path.join(MODEL_DIR, cfg["scaler"]))
scaled_embedding = mic_scaler.transform(embedding)
transformed_embedding = scaled_embedding
if cfg["pca"]:
mic_pca = joblib.load(os.path.join(MODEL_DIR, cfg["pca"]))
transformed_embedding = mic_pca.transform(scaled_embedding)
mic_model = joblib.load(os.path.join(MODEL_DIR, cfg["model"]))
mic_log = mic_model.predict(transformed_embedding)[0]
mic = round(expm1(mic_log), 3)
mic_results[bacterium_key] = mic
except FileNotFoundError as e:
mic_results[bacterium_key] = f"Model file not found for {cfg['display_name']}: {e}"
except Exception as e:
mic_results[bacterium_key] = f"Prediction error for {cfg['display_name']}: {e}"
return mic_results
# --- LIME Plot Generation Helper ---
def generate_lime_plot_base64(explanation_list: list) -> str:
"""
Generates a LIME explanation plot and returns it as a base64 encoded PNG string.
Args:
explanation_list (list): The output from LimeExplanation.as_list().
Returns:
str: Base64 encoded PNG image string.
"""
if not explanation_list:
return ""
fig, ax = plt.subplots(figsize=(10, 6))
features = [item[0] for item in explanation_list]
weights = [item[1] for item in explanation_list]
sorted_indices = np.argsort(np.abs(weights))[::-1]
features_sorted = [features[i] for i in sorted_indices]
weights_sorted = [weights[i] for i in sorted_indices]
y_pos = np.arange(len(features_sorted))
colors = ['green' if w > 0 else 'red' for w in weights_sorted]
ax.barh(y_pos, weights_sorted, align='center', color=colors)
ax.set_yticks(y_pos)
ax.set_yticklabels(features_sorted, fontsize=10)
ax.invert_yaxis()
ax.set_xlabel('Contribution to Prediction (LIME Weight)', fontsize=12)
ax.set_title('Top Features Influencing Prediction (LIME)', fontsize=14)
ax.axvline(0, color='grey', linestyle='--', linewidth=0.8)
plt.grid(axis='x', linestyle=':', alpha=0.7)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
plt.close(fig)
return image_base64
# --- Gradio API Endpoints ---
def classify_and_interpret_amp(sequence: str) -> dict:
"""
Gradio API endpoint for AMP classification and interpretability (LIME).
This function processes the sequence, performs classification, generates LIME explanation,
and formats the output as a structured dictionary for the frontend.
"""
try:
features = extract_features(sequence)
prediction_class_idx = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
amp_label = "AMP (Positive)" if prediction_class_idx == 0 else "Non-AMP"
confidence = probabilities[prediction_class_idx]
explanation = explainer.explain_instance(
data_row=features[0],
predict_fn=model.predict_proba,
num_features=10
)
top_features = []
for feat_str, weight in explanation.as_list():
# Parse the feature string from LIME (e.g., "APAAC4 <= 0.23")
# This parsing is a heuristic based on LIME's default output format.
parts = feat_str.split(" ", 1)
feature_name = parts[0]
condition = parts[1] if len(parts) > 1 else ""
top_features.append({
"feature": feature_name,
"condition": condition.strip(),
"value": round(weight, 4)
})
lime_plot_base64_str = generate_lime_plot_base64(explanation.as_list())
return {
"label": amp_label,
"confidence": float(confidence),
"shap_plot_base64": lime_plot_base64_str,
"top_features": top_features
}
except gr.Error as e:
raise e
except Exception as e:
raise gr.Error(f"An unexpected error occurred during AMP classification: {e}")
def get_mic_predictions_api(sequence: str, selected_bacteria_keys: list) -> dict:
"""
Gradio API endpoint for MIC prediction.
This function wraps the `predictmic` function to serve as a separate API endpoint.
"""
try:
mic_results = predictmic(sequence, selected_bacteria_keys)
return mic_results
except gr.Error as e:
raise e
except Exception as e:
raise gr.Error(f"An unexpected error occurred during MIC prediction API call: {e}")
# --- Gradio Interface Definition ---
with gr.Blocks() as demo:
gr.Markdown("# EPIC-AMP Platform Backend API")
gr.Markdown("This Gradio application provides the backend services for the EPIC-AMP frontend.")
with gr.Tab("AMP Classification & Interpretability API"):
gr.Markdown("### `/predict` Endpoint (AMP Classification, Confidence, LIME Plot, Top Features)")
gr.Markdown("Input an amino acid sequence (10-100 AAs) to get classification details.")
sequence_input_amp = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter sequence here...")
amp_api_output = gr.Json(label="AMP Prediction Details JSON Output")
gr.Button("Test Classification").click(
fn=classify_and_interpret_amp,
inputs=[sequence_input_amp],
outputs=[amp_api_output],
api_name="predict"
)
with gr.Tab("MIC Prediction API"):
gr.Markdown("### `/predict_mic` Endpoint (MIC Values)")
gr.Markdown("Input an amino acid sequence (only if classified as AMP) and select bacteria to get predicted MIC values.")
sequence_input_mic = gr.Textbox(label="Amino Acid Sequence", lines=5, placeholder="Enter AMP sequence for MIC prediction...")
mic_bacteria_checkboxes = gr.CheckboxGroup(
choices=["e_coli", "p_aeruginosa", "s_aureus", "k_pneumoniae"],
label="Select Bacteria for MIC Prediction (keys for backend)"
)
mic_api_output = gr.Json(label="MIC Prediction JSON Output")
gr.Button("Test MIC Prediction").click(
fn=get_mic_predictions_api,
inputs=[sequence_input_mic, mic_bacteria_checkboxes],
outputs=[mic_api_output],
api_name="predict_mic"
)
demo.launch(share=True, enable_queue=True, show_api=True)