nonzeroexit commited on
Commit
1b75bda
·
verified ·
1 Parent(s): b9edf08

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -71,10 +71,10 @@ def extract_features(sequence):
71
  all_features_dict.update(pseudo_features)
72
 
73
  feature_values = list(all_features_dict.values())
74
- feature_array = np.array(feature_values).reshape(1, -1) # Reshape to (1, n_features) - CORRECT SHAPE
75
  print(f"Shape of feature_array before normalization: {feature_array.shape}") # Debug print
76
 
77
- normalized_features = scaler.transform(feature_array) # Normalize - NO TRANSPOSE
78
  normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed
79
 
80
 
@@ -84,7 +84,7 @@ def extract_features(sequence):
84
  selected_feature_dict[feature] = normalized_features[i]
85
 
86
  selected_feature_df = pd.DataFrame([selected_feature_dict])
87
- selected_feature_array = selected_feature_df.to_numpy()
88
 
89
  return selected_feature_array
90
 
@@ -95,8 +95,8 @@ def predict(sequence):
95
  if isinstance(features, str) and features.startswith("Error:"):
96
  return features
97
 
98
- prediction = model.predict(features)[0]
99
- probabilities = model.predict_proba(features)[0]
100
 
101
  if prediction == 0:
102
  return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
 
71
  all_features_dict.update(pseudo_features)
72
 
73
  feature_values = list(all_features_dict.values())
74
+ feature_array = np.array(feature_values).reshape(-1, 1) # Reshape to (1, n_features) - CORRECT SHAPE
75
  print(f"Shape of feature_array before normalization: {feature_array.shape}") # Debug print
76
 
77
+ normalized_features = scaler.transform(feature_array.T) # Normalize - NO TRANSPOSE
78
  normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed
79
 
80
 
 
84
  selected_feature_dict[feature] = normalized_features[i]
85
 
86
  selected_feature_df = pd.DataFrame([selected_feature_dict])
87
+ selected_feature_array = selected_feature_df.T.to_numpy()
88
 
89
  return selected_feature_array
90
 
 
95
  if isinstance(features, str) and features.startswith("Error:"):
96
  return features
97
 
98
+ prediction = model.predict(features.T)[0]
99
+ probabilities = model.predict_proba(features.T)[0]
100
 
101
  if prediction == 0:
102
  return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"