Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,38 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
from propy import AAComposition
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
7 |
|
8 |
-
#
|
9 |
-
app = FastAPI()
|
10 |
-
|
11 |
-
# Load trained SVM model and scaler
|
12 |
model = joblib.load("SVM.joblib")
|
13 |
scaler = MinMaxScaler()
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
def extract_features(sequence: str):
|
20 |
-
"""Extract Amino Acid Composition (AAC) features and normalize them."""
|
21 |
-
try:
|
22 |
-
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
23 |
-
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
24 |
-
return normalized_features
|
25 |
-
except Exception as e:
|
26 |
-
raise HTTPException(status_code=400, detail=f"Feature extraction failed: {str(e)}")
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
features = extract_features(input_data.sequence)
|
32 |
prediction = model.predict(features)[0]
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
from propy import AAComposition
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
|
7 |
+
# Load trained SVM model and scaler (Ensure both files exist in the Space)
|
|
|
|
|
|
|
8 |
model = joblib.load("SVM.joblib")
|
9 |
scaler = MinMaxScaler()
|
10 |
|
11 |
+
def extract_features(sequence):
|
12 |
+
"""Calculate AAC, Dipeptide Composition, and normalize features."""
|
13 |
+
# Calculate Amino Acid Composition (AAC) and convert to array
|
14 |
+
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
15 |
+
|
16 |
+
# Normalize using the pre-trained scaler (Ensure the scaler is loaded correctly)
|
17 |
+
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
18 |
+
|
19 |
+
return normalized_features
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def predict(sequence):
|
23 |
+
"""Predict AMP vs Non-AMP"""
|
24 |
+
features = extract_features(sequence)
|
|
|
25 |
prediction = model.predict(features)[0]
|
26 |
+
return "AMP" if prediction == 1 else "Non-AMP"
|
27 |
+
|
28 |
+
# Create Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=predict,
|
31 |
+
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
32 |
+
outputs=gr.Label(label="Prediction"),
|
33 |
+
title="AMP Classifier",
|
34 |
+
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
35 |
+
)
|
36 |
|
37 |
+
# Launch app
|
38 |
+
iface.launch(share=True)
|