Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,36 @@
|
|
1 |
-
import
|
|
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
from propy import AAComposition
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
8 |
model = joblib.load("SVM.joblib")
|
9 |
scaler = MinMaxScaler()
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
15 |
-
|
16 |
-
# Normalize using the pre-trained scaler (Ensure the scaler is loaded correctly)
|
17 |
-
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
18 |
-
|
19 |
-
return normalized_features
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
prediction = model.predict(features)[0]
|
26 |
-
|
27 |
-
|
28 |
-
# Create Gradio interface
|
29 |
-
iface = gr.Interface(
|
30 |
-
fn=predict,
|
31 |
-
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
32 |
-
outputs=gr.Label(label="Prediction"),
|
33 |
-
title="AMP Classifier",
|
34 |
-
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
35 |
-
)
|
36 |
|
37 |
-
#
|
38 |
-
iface.launch(share=True)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
from propy import AAComposition
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
7 |
|
8 |
+
# Initialize FastAPI app
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load trained SVM model and scaler
|
12 |
model = joblib.load("SVM.joblib")
|
13 |
scaler = MinMaxScaler()
|
14 |
|
15 |
+
# Define request schema
|
16 |
+
class SequenceInput(BaseModel):
|
17 |
+
sequence: str
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def extract_features(sequence: str):
|
20 |
+
"""Extract Amino Acid Composition (AAC) features and normalize them."""
|
21 |
+
try:
|
22 |
+
aac = np.array(list(AAComposition.CalculateAADipeptideComposition(sequence)), dtype=float)
|
23 |
+
normalized_features = scaler.fit_transform([aac]) # Don't use fit_transform(), only transform()
|
24 |
+
return normalized_features
|
25 |
+
except Exception as e:
|
26 |
+
raise HTTPException(status_code=400, detail=f"Feature extraction failed: {str(e)}")
|
27 |
|
28 |
+
@app.post("/predict/")
|
29 |
+
def predict(input_data: SequenceInput):
|
30 |
+
"""Predict AMP vs Non-AMP from protein sequence."""
|
31 |
+
features = extract_features(input_data.sequence)
|
32 |
prediction = model.predict(features)[0]
|
33 |
+
result = "AMP" if prediction == 1 else "Non-AMP"
|
34 |
+
return {"prediction": result}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Run using: uvicorn script_name:app --host 0.0.0.0 --port 8000 --reload
|
|