Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -51,14 +51,9 @@ def extract_features(sequence):
|
|
51 |
return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
|
52 |
|
53 |
all_features_dict = {}
|
54 |
-
|
55 |
-
# Calculate all dipeptide features
|
56 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
57 |
-
|
58 |
-
first_420_keys = list(dipeptide_features.keys())[:420]
|
59 |
-
filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
|
60 |
-
|
61 |
-
all_features_dict.update(filtered_dipeptide_features)
|
62 |
|
63 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
64 |
all_features_dict.update(auto_features)
|
@@ -70,9 +65,12 @@ def extract_features(sequence):
|
|
70 |
all_features_dict.update(pseudo_features)
|
71 |
|
72 |
feature_values = list(all_features_dict.values())
|
73 |
-
feature_array = np.array(feature_values).reshape(1, -1)
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
selected_feature_dict = {}
|
78 |
for i, feature in enumerate(selected_features):
|
|
|
51 |
return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
|
52 |
|
53 |
all_features_dict = {}
|
54 |
+
|
|
|
55 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
56 |
+
all_features_dict.update(dipeptide_features)
|
|
|
|
|
|
|
|
|
57 |
|
58 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
59 |
all_features_dict.update(auto_features)
|
|
|
65 |
all_features_dict.update(pseudo_features)
|
66 |
|
67 |
feature_values = list(all_features_dict.values())
|
68 |
+
feature_array = np.array(feature_values).reshape(1, -1) # Reshape to (1, n_features) - CORRECT SHAPE
|
69 |
+
print(f"Shape of feature_array before normalization: {feature_array.shape}") # Debug print
|
70 |
+
|
71 |
+
normalized_features = scaler.transform(feature_array) # Normalize - NO TRANSPOSE
|
72 |
+
normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed
|
73 |
+
|
74 |
|
75 |
selected_feature_dict = {}
|
76 |
for i, feature in enumerate(selected_features):
|