nonzeroexit commited on
Commit
4d0770a
·
verified ·
1 Parent(s): 0a79b0c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -10
app.py CHANGED
@@ -51,14 +51,9 @@ def extract_features(sequence):
51
  return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
52
 
53
  all_features_dict = {}
54
-
55
- # Calculate all dipeptide features
56
  dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
57
-
58
- first_420_keys = list(dipeptide_features.keys())[:420]
59
- filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
60
-
61
- all_features_dict.update(filtered_dipeptide_features)
62
 
63
  auto_features = Autocorrelation.CalculateAutoTotal(sequence)
64
  all_features_dict.update(auto_features)
@@ -70,9 +65,12 @@ def extract_features(sequence):
70
  all_features_dict.update(pseudo_features)
71
 
72
  feature_values = list(all_features_dict.values())
73
- feature_array = np.array(feature_values).reshape(1, -1)
74
- normalized_features = scaler.transform(feature_array.T)
75
- normalized_features = normalized_features.flatten()
 
 
 
76
 
77
  selected_feature_dict = {}
78
  for i, feature in enumerate(selected_features):
 
51
  return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
52
 
53
  all_features_dict = {}
54
+
 
55
  dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
56
+ all_features_dict.update(dipeptide_features)
 
 
 
 
57
 
58
  auto_features = Autocorrelation.CalculateAutoTotal(sequence)
59
  all_features_dict.update(auto_features)
 
65
  all_features_dict.update(pseudo_features)
66
 
67
  feature_values = list(all_features_dict.values())
68
+ feature_array = np.array(feature_values).reshape(1, -1) # Reshape to (1, n_features) - CORRECT SHAPE
69
+ print(f"Shape of feature_array before normalization: {feature_array.shape}") # Debug print
70
+
71
+ normalized_features = scaler.transform(feature_array) # Normalize - NO TRANSPOSE
72
+ normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed
73
+
74
 
75
  selected_feature_dict = {}
76
  for i, feature in enumerate(selected_features):