Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,10 @@ import pandas as pd
|
|
5 |
from propy import AAComposition
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
7 |
|
8 |
-
# Load trained SVM model and scaler (Ensure both files exist in the Space)
|
9 |
model = joblib.load("SVM.joblib")
|
10 |
scaler = joblib.load("norm.joblib")
|
11 |
|
12 |
|
13 |
-
# List of features used in your model
|
14 |
selected_features = [
|
15 |
"A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V",
|
16 |
"AA", "AR", "AN", "AD", "AC", "AE", "AQ", "AG", "AI", "AL", "AK", "AF", "AP", "AS", "AT", "AY", "AV",
|
@@ -37,27 +35,19 @@ selected_features = [
|
|
37 |
|
38 |
def extract_features(sequence):
|
39 |
"""Extract only the required features and normalize them."""
|
40 |
-
|
41 |
-
|
42 |
-
# Extract the values from the dictionary
|
43 |
-
feature_values = list(all_features.values()) # Extract values only
|
44 |
-
# Convert to NumPy array for normalization
|
45 |
feature_array = np.array(feature_values).reshape(-1, 1)
|
46 |
feature_array = feature_array[: 420]
|
47 |
-
# Min-Max Normalization
|
48 |
normalized_features = scaler.transform(feature_array.T)
|
49 |
|
50 |
-
|
51 |
-
normalized_features = normalized_features.flatten() # Flatten array
|
52 |
|
53 |
-
# Create a dictionary with selected features
|
54 |
selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features)
|
55 |
if feature in all_features}
|
56 |
|
57 |
-
# Convert dictionary to dataframe
|
58 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
59 |
|
60 |
-
# Convert dataframe to numpy array
|
61 |
selected_feature_array = selected_feature_df.T.to_numpy()
|
62 |
|
63 |
return selected_feature_array
|
@@ -68,11 +58,18 @@ def predict(sequence):
|
|
68 |
"""Predict AMP vs Non-AMP"""
|
69 |
features = extract_features(sequence)
|
70 |
prediction = model.predict(features.T)[0]
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
return "Potential Bioactive Peptide with Antimicrobial Properties (P-AMP)" if prediction == 0 else "Likely Non-Antimicrobial Peptide", probabilities[0]
|
74 |
|
75 |
-
# Create Gradio interface
|
76 |
iface = gr.Interface(
|
77 |
fn=predict,
|
78 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
@@ -81,5 +78,4 @@ iface = gr.Interface(
|
|
81 |
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
82 |
)
|
83 |
|
84 |
-
# Launch app
|
85 |
iface.launch(share=True)
|
|
|
5 |
from propy import AAComposition
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
7 |
|
|
|
8 |
model = joblib.load("SVM.joblib")
|
9 |
scaler = joblib.load("norm.joblib")
|
10 |
|
11 |
|
|
|
12 |
selected_features = [
|
13 |
"A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V",
|
14 |
"AA", "AR", "AN", "AD", "AC", "AE", "AQ", "AG", "AI", "AL", "AK", "AF", "AP", "AS", "AT", "AY", "AV",
|
|
|
35 |
|
36 |
def extract_features(sequence):
|
37 |
"""Extract only the required features and normalize them."""
|
38 |
+
all_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
39 |
+
feature_values = list(all_features.values())
|
|
|
|
|
|
|
40 |
feature_array = np.array(feature_values).reshape(-1, 1)
|
41 |
feature_array = feature_array[: 420]
|
|
|
42 |
normalized_features = scaler.transform(feature_array.T)
|
43 |
|
44 |
+
normalized_features = normalized_features.flatten()
|
|
|
45 |
|
|
|
46 |
selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features)
|
47 |
if feature in all_features}
|
48 |
|
|
|
49 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
50 |
|
|
|
51 |
selected_feature_array = selected_feature_df.T.to_numpy()
|
52 |
|
53 |
return selected_feature_array
|
|
|
58 |
"""Predict AMP vs Non-AMP"""
|
59 |
features = extract_features(sequence)
|
60 |
prediction = model.predict(features.T)[0]
|
61 |
+
probability_amp = model.predict_proba(features.T)
|
62 |
+
|
63 |
+
if prediction == 0:
|
64 |
+
prediction_label = "Potential Bioactive Peptide with Antimicrobial Properties (P-AMP)"
|
65 |
+
probability_amp = probabilities[0]
|
66 |
+
else:
|
67 |
+
prediction_label = "Likely Non-Antimicrobial Peptide"
|
68 |
+
probability_amp = probabilities[0]
|
69 |
+
|
70 |
+
return prediction_label, probability_amp
|
71 |
|
|
|
72 |
|
|
|
73 |
iface = gr.Interface(
|
74 |
fn=predict,
|
75 |
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
|
|
78 |
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
79 |
)
|
80 |
|
|
|
81 |
iface.launch(share=True)
|