Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -65,31 +65,20 @@ selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondarySt
|
|
65 |
|
66 |
# LIME Explainer Setup
|
67 |
try:
|
68 |
-
# Attempt to load a real sample data for LIME background if available
|
69 |
-
# e.g., sample_data = np.load(os.path.join(MODEL_DIR, 'sample_training_features_scaled.npy'))
|
70 |
sample_data = np.random.rand(500, len(selected_features)) # Fallback: Generate random sample data
|
71 |
except Exception:
|
72 |
print("Warning: Could not load pre-saved sample data for LIME. Generating random sample data.")
|
73 |
-
sample_data = np.random.rand(500, len(selected_features))
|
74 |
|
75 |
explainer = LimeTabularExplainer(
|
76 |
training_data=sample_data,
|
77 |
feature_names=selected_features,
|
78 |
-
class_names=["AMP", "Non-AMP"],
|
79 |
mode="classification"
|
80 |
)
|
81 |
|
82 |
# --- Feature Extraction Function ---
|
83 |
def extract_features(sequence: str) -> np.ndarray:
|
84 |
-
"""
|
85 |
-
Extracts biochemical and compositional features from an amino acid sequence.
|
86 |
-
Args:
|
87 |
-
sequence (str): The amino acid sequence.
|
88 |
-
Returns:
|
89 |
-
np.ndarray: A scaled 2D numpy array of selected features (1, num_features).
|
90 |
-
Raises:
|
91 |
-
gr.Error: If the sequence is invalid or feature extraction fails.
|
92 |
-
"""
|
93 |
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
94 |
if not (10 <= len(cleaned_sequence) <= 100):
|
95 |
raise gr.Error(f"Invalid sequence length ({len(cleaned_sequence)}). Must be between 10 and 100 characters and contain only standard amino acids.")
|
@@ -119,17 +108,6 @@ def extract_features(sequence: str) -> np.ndarray:
|
|
119 |
|
120 |
# --- MIC Prediction Function ---
|
121 |
def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
|
122 |
-
"""
|
123 |
-
Predicts Minimum Inhibitory Concentration (MIC) for selected bacteria using ProtBert embeddings.
|
124 |
-
Args:
|
125 |
-
sequence (str): The amino acid sequence.
|
126 |
-
selected_bacteria_keys (list): List of keys for bacteria to predict MIC for (e.g., ['e_coli', 'p_aeruginosa']).
|
127 |
-
Returns:
|
128 |
-
dict: A dictionary where keys are bacterium keys and values are predicted MICs in µM.
|
129 |
-
Returns error messages for individual bacteria if prediction fails.
|
130 |
-
Raises:
|
131 |
-
gr.Error: If ProtBert embedding fails or sequence is invalid.
|
132 |
-
"""
|
133 |
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
134 |
if not (10 <= len(cleaned_sequence) <= 100):
|
135 |
raise gr.Error(f"Invalid sequence length for MIC prediction ({len(cleaned_sequence)}). Must be between 10 and 100 characters.")
|
@@ -179,13 +157,6 @@ def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
|
|
179 |
|
180 |
# --- LIME Plot Generation Helper ---
|
181 |
def generate_lime_plot_base64(explanation_list: list) -> str:
|
182 |
-
"""
|
183 |
-
Generates a LIME explanation plot and returns it as a base64 encoded PNG string.
|
184 |
-
Args:
|
185 |
-
explanation_list (list): The output from LimeExplanation.as_list().
|
186 |
-
Returns:
|
187 |
-
str: Base64 encoded PNG image string.
|
188 |
-
"""
|
189 |
if not explanation_list:
|
190 |
return ""
|
191 |
|
@@ -218,11 +189,6 @@ def generate_lime_plot_base64(explanation_list: list) -> str:
|
|
218 |
# --- Gradio API Endpoints ---
|
219 |
|
220 |
def classify_and_interpret_amp(sequence: str) -> dict:
|
221 |
-
"""
|
222 |
-
Gradio API endpoint for AMP classification and interpretability (LIME).
|
223 |
-
This function processes the sequence, performs classification, generates LIME explanation,
|
224 |
-
and formats the output as a structured dictionary for the frontend.
|
225 |
-
"""
|
226 |
try:
|
227 |
features = extract_features(sequence)
|
228 |
|
@@ -240,8 +206,6 @@ def classify_and_interpret_amp(sequence: str) -> dict:
|
|
240 |
|
241 |
top_features = []
|
242 |
for feat_str, weight in explanation.as_list():
|
243 |
-
# Parse the feature string from LIME (e.g., "APAAC4 <= 0.23")
|
244 |
-
# This parsing is a heuristic based on LIME's default output format.
|
245 |
parts = feat_str.split(" ", 1)
|
246 |
feature_name = parts[0]
|
247 |
condition = parts[1] if len(parts) > 1 else ""
|
@@ -267,10 +231,6 @@ def classify_and_interpret_amp(sequence: str) -> dict:
|
|
267 |
raise gr.Error(f"An unexpected error occurred during AMP classification: {e}")
|
268 |
|
269 |
def get_mic_predictions_api(sequence: str, selected_bacteria_keys: list) -> dict:
|
270 |
-
"""
|
271 |
-
Gradio API endpoint for MIC prediction.
|
272 |
-
This function wraps the `predictmic` function to serve as a separate API endpoint.
|
273 |
-
"""
|
274 |
try:
|
275 |
mic_results = predictmic(sequence, selected_bacteria_keys)
|
276 |
return mic_results
|
@@ -312,4 +272,5 @@ with gr.Blocks() as demo:
|
|
312 |
api_name="predict_mic"
|
313 |
)
|
314 |
|
315 |
-
|
|
|
|
65 |
|
66 |
# LIME Explainer Setup
|
67 |
try:
|
|
|
|
|
68 |
sample_data = np.random.rand(500, len(selected_features)) # Fallback: Generate random sample data
|
69 |
except Exception:
|
70 |
print("Warning: Could not load pre-saved sample data for LIME. Generating random sample data.")
|
71 |
+
sample_data = np.random.rand(500, len(selected_features))
|
72 |
|
73 |
explainer = LimeTabularExplainer(
|
74 |
training_data=sample_data,
|
75 |
feature_names=selected_features,
|
76 |
+
class_names=["AMP", "Non-AMP"],
|
77 |
mode="classification"
|
78 |
)
|
79 |
|
80 |
# --- Feature Extraction Function ---
|
81 |
def extract_features(sequence: str) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
83 |
if not (10 <= len(cleaned_sequence) <= 100):
|
84 |
raise gr.Error(f"Invalid sequence length ({len(cleaned_sequence)}). Must be between 10 and 100 characters and contain only standard amino acids.")
|
|
|
108 |
|
109 |
# --- MIC Prediction Function ---
|
110 |
def predictmic(sequence: str, selected_bacteria_keys: list) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
cleaned_sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
|
112 |
if not (10 <= len(cleaned_sequence) <= 100):
|
113 |
raise gr.Error(f"Invalid sequence length for MIC prediction ({len(cleaned_sequence)}). Must be between 10 and 100 characters.")
|
|
|
157 |
|
158 |
# --- LIME Plot Generation Helper ---
|
159 |
def generate_lime_plot_base64(explanation_list: list) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
if not explanation_list:
|
161 |
return ""
|
162 |
|
|
|
189 |
# --- Gradio API Endpoints ---
|
190 |
|
191 |
def classify_and_interpret_amp(sequence: str) -> dict:
|
|
|
|
|
|
|
|
|
|
|
192 |
try:
|
193 |
features = extract_features(sequence)
|
194 |
|
|
|
206 |
|
207 |
top_features = []
|
208 |
for feat_str, weight in explanation.as_list():
|
|
|
|
|
209 |
parts = feat_str.split(" ", 1)
|
210 |
feature_name = parts[0]
|
211 |
condition = parts[1] if len(parts) > 1 else ""
|
|
|
231 |
raise gr.Error(f"An unexpected error occurred during AMP classification: {e}")
|
232 |
|
233 |
def get_mic_predictions_api(sequence: str, selected_bacteria_keys: list) -> dict:
|
|
|
|
|
|
|
|
|
234 |
try:
|
235 |
mic_results = predictmic(sequence, selected_bacteria_keys)
|
236 |
return mic_results
|
|
|
272 |
api_name="predict_mic"
|
273 |
)
|
274 |
|
275 |
+
# Corrected launch command: removed 'enable_queue'
|
276 |
+
demo.launch(share=True, show_api=True)
|