Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -47,32 +47,32 @@ selected_features = [
|
|
47 |
|
48 |
def extract_features(sequence):
|
49 |
"""Extract selected features and normalize them."""
|
50 |
-
if len(sequence)
|
51 |
-
return
|
52 |
|
53 |
all_features_dict = {}
|
54 |
|
55 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
56 |
-
all_features_dict.update(dipeptide_features)
|
57 |
|
58 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
59 |
-
all_features_dict.update(auto_features)
|
60 |
|
61 |
ctd_features = CTD.CalculateCTD(sequence)
|
62 |
-
all_features_dict.update(ctd_features)
|
63 |
|
64 |
-
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence)
|
65 |
-
all_features_dict.update(pseudo_features)
|
66 |
|
67 |
|
68 |
-
feature_values = list(all_features_dict.values())
|
69 |
feature_array = np.array(feature_values).reshape(-1, 1)
|
70 |
normalized_features = scaler.transform(feature_array.T)
|
71 |
normalized_features = normalized_features.flatten()
|
72 |
|
73 |
selected_feature_dict = {}
|
74 |
for i, feature in enumerate(selected_features):
|
75 |
-
if feature in all_features_dict:
|
76 |
selected_feature_dict[feature] = normalized_features[i]
|
77 |
|
78 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
@@ -84,8 +84,8 @@ def extract_features(sequence):
|
|
84 |
def predict(sequence):
|
85 |
"""Predicts whether the input sequence is an AMP."""
|
86 |
features = extract_features(sequence)
|
87 |
-
if features
|
88 |
-
return
|
89 |
|
90 |
prediction = model.predict(features)[0]
|
91 |
probabilities = model.predict_proba(features)[0]
|
|
|
47 |
|
48 |
def extract_features(sequence):
|
49 |
"""Extract selected features and normalize them."""
|
50 |
+
if len(sequence) <= 9: # Ensure sequence is long enough for PseudoAAC with lamda=9
|
51 |
+
return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
|
52 |
|
53 |
all_features_dict = {}
|
54 |
|
55 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
56 |
+
all_features_dict.update(dipeptide_features)
|
57 |
|
58 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
59 |
+
all_features_dict.update(auto_features)
|
60 |
|
61 |
ctd_features = CTD.CalculateCTD(sequence)
|
62 |
+
all_features_dict.update(ctd_features)
|
63 |
|
64 |
+
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9) # Set lamda=9
|
65 |
+
all_features_dict.update(pseudo_features)
|
66 |
|
67 |
|
68 |
+
feature_values = list(all_features_dict.values())
|
69 |
feature_array = np.array(feature_values).reshape(-1, 1)
|
70 |
normalized_features = scaler.transform(feature_array.T)
|
71 |
normalized_features = normalized_features.flatten()
|
72 |
|
73 |
selected_feature_dict = {}
|
74 |
for i, feature in enumerate(selected_features):
|
75 |
+
if feature in all_features_dict:
|
76 |
selected_feature_dict[feature] = normalized_features[i]
|
77 |
|
78 |
selected_feature_df = pd.DataFrame([selected_feature_dict])
|
|
|
84 |
def predict(sequence):
|
85 |
"""Predicts whether the input sequence is an AMP."""
|
86 |
features = extract_features(sequence)
|
87 |
+
if isinstance(features, str) and features.startswith("Error:"): # Check if extract_features returned an error message
|
88 |
+
return features # Return the error message directly
|
89 |
|
90 |
prediction = model.predict(features)[0]
|
91 |
probabilities = model.predict_proba(features)[0]
|