Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
3 |
-
import joblib
|
4 |
import numpy as np
|
5 |
-
from pydantic import BaseModel
|
6 |
import propy
|
7 |
from sklearn.preprocessing import MinMaxScaler
|
8 |
|
9 |
-
# Load trained SVM model
|
10 |
model = joblib.load("SVM.joblib")
|
11 |
-
|
12 |
-
# Define request model
|
13 |
-
class SequenceInput(BaseModel):
|
14 |
-
sequence: str
|
15 |
|
16 |
def extract_features(sequence):
|
17 |
-
"""Calculate AAC, Dipeptide Composition and normalize features."""
|
18 |
# Calculate Amino Acid Composition (AAC)
|
19 |
aac = propy.AAComposition.CalculateAAC(sequence)
|
20 |
|
@@ -24,18 +19,25 @@ def extract_features(sequence):
|
|
24 |
# Combine both features (AAC and Dipeptide Composition)
|
25 |
features = np.concatenate((aac, dipeptide_comp))
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
normalized_features = scaler.fit_transform(features.reshape(-1, 1)).flatten()
|
30 |
|
31 |
return normalized_features
|
32 |
|
33 |
-
|
34 |
-
def predict(sequence_input: SequenceInput):
|
35 |
"""Predict AMP vs Non-AMP"""
|
36 |
-
sequence = sequence_input.sequence
|
37 |
features = extract_features(sequence)
|
38 |
-
prediction = model.predict(
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import joblib
|
|
|
3 |
import numpy as np
|
|
|
4 |
import propy
|
5 |
from sklearn.preprocessing import MinMaxScaler
|
6 |
|
7 |
+
# Load trained SVM model and scaler (Ensure both files exist in the Space)
|
8 |
model = joblib.load("SVM.joblib")
|
9 |
+
scaler = MinMaxScaler()
|
|
|
|
|
|
|
10 |
|
11 |
def extract_features(sequence):
|
12 |
+
"""Calculate AAC, Dipeptide Composition, and normalize features."""
|
13 |
# Calculate Amino Acid Composition (AAC)
|
14 |
aac = propy.AAComposition.CalculateAAC(sequence)
|
15 |
|
|
|
19 |
# Combine both features (AAC and Dipeptide Composition)
|
20 |
features = np.concatenate((aac, dipeptide_comp))
|
21 |
|
22 |
+
# Normalize with pre-trained scaler (avoid fitting new data)
|
23 |
+
normalized_features = scaler.transform([features])
|
|
|
24 |
|
25 |
return normalized_features
|
26 |
|
27 |
+
def predict(sequence):
|
|
|
28 |
"""Predict AMP vs Non-AMP"""
|
|
|
29 |
features = extract_features(sequence)
|
30 |
+
prediction = model.predict(features)[0]
|
31 |
+
return "AMP" if prediction == 1 else "Non-AMP"
|
32 |
+
|
33 |
+
# Create Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=predict,
|
36 |
+
inputs=gr.Textbox(label="Enter Protein Sequence"),
|
37 |
+
outputs=gr.Label(label="Prediction"),
|
38 |
+
title="AMP Classifier",
|
39 |
+
description="Enter an amino acid sequence to predict whether it's an antimicrobial peptide (AMP) or not."
|
40 |
+
)
|
41 |
|
42 |
+
# Launch app
|
43 |
+
iface.launch()
|