nonzeroexit commited on
Commit
f4d6f55
·
verified ·
1 Parent(s): 4eaa8e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -11
app.py CHANGED
@@ -43,6 +43,23 @@ selected_features = [
43
  "APAAC24"
44
  ]
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  def extract_features(sequence):
47
  """Extract selected features and normalize them."""
48
 
@@ -54,18 +71,14 @@ def extract_features(sequence):
54
 
55
  # Combine all extracted features
56
  all_features = {**aa_features, **auto_features, **ctd_features, **pseaac_features}
 
 
57
 
58
- # Ensure all selected features are present
59
- feature_dict = {feature: all_features.get(feature, 0) for feature in selected_features}
60
-
61
- # Convert to DataFrame
62
- feature_df = pd.DataFrame([feature_dict])
63
-
64
- # Normalize the features
65
- normalized_features = scaler.transform(feature_df)
66
-
67
- # Convert to a NumPy array in the expected format
68
- selected_feature_array = normalized_features.flatten().reshape(1, -1)
69
 
70
  return selected_feature_array
71
 
 
43
  "APAAC24"
44
  ]
45
 
46
+ def extract_features(sequence):
47
+ """Extract selected features and normalize them."""
48
+ all_features = AAComposition.CalculateAADipeptideComposition(sequence)
49
+ feature_values = list(all_features.values())
50
+ feature_array = np.array(feature_values).reshape(-1, 1)
51
+ feature_array = feature_array[: 420] # Ensure we only use 420 features
52
+ normalized_features = scaler.transform(feature_array.T)
53
+ normalized_features = normalized_features.flatten()
54
+
55
+ # Select features that match training data
56
+ selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features)
57
+ if feature in all_features}
58
+ selected_feature_df = pd.DataFrame([selected_feature_dict])
59
+ selected_feature_array = selected_feature_df.T.to_numpy()
60
+
61
+ return selected_feature_array
62
+
63
  def extract_features(sequence):
64
  """Extract selected features and normalize them."""
65
 
 
71
 
72
  # Combine all extracted features
73
  all_features = {**aa_features, **auto_features, **ctd_features, **pseaac_features}
74
+ normalized_features = scaler.transform(all_features.T)
75
+ normalized_features = normalized_features.flatten()
76
 
77
+ # Select features that match training data
78
+ selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features)
79
+ if feature in all_features}
80
+ selected_feature_df = pd.DataFrame([selected_feature_dict])
81
+ selected_feature_array = selected_feature_df.T.to_numpy()
 
 
 
 
 
 
82
 
83
  return selected_feature_array
84