Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -46,20 +46,15 @@ selected_features = [
|
|
46 |
]
|
47 |
|
48 |
def extract_features(sequence):
|
49 |
-
"""Extract selected features, ensure order matches trained features, and normalize them."""
|
50 |
-
if len(sequence) <= 9:
|
51 |
-
return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."
|
52 |
|
53 |
all_features_dict = {}
|
54 |
|
55 |
# Calculate all dipeptide features
|
56 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
57 |
-
|
58 |
-
# Add
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
all_features_dict.update(filtered_dipeptide_features)
|
63 |
|
64 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
65 |
all_features_dict.update(auto_features)
|
@@ -70,20 +65,23 @@ def extract_features(sequence):
|
|
70 |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
|
71 |
all_features_dict.update(pseudo_features)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
normalized_features = scaler.transform(feature_array.T) # Normalize - NO TRANSPOSE
|
78 |
-
normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed
|
79 |
|
|
|
80 |
|
81 |
-
selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features) if feature in all_features_dict}
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
return
|
87 |
|
88 |
|
89 |
def predict(sequence):
|
@@ -92,8 +90,8 @@ def predict(sequence):
|
|
92 |
if isinstance(features, str) and features.startswith("Error:"):
|
93 |
return features
|
94 |
|
95 |
-
prediction = model.predict(features
|
96 |
-
probabilities = model.predict_proba(features
|
97 |
|
98 |
if prediction == 0:
|
99 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|
|
|
46 |
]
|
47 |
|
48 |
def extract_features(sequence):
|
|
|
|
|
|
|
49 |
|
50 |
all_features_dict = {}
|
51 |
|
52 |
# Calculate all dipeptide features
|
53 |
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
|
54 |
+
|
55 |
+
# Add all dipeptide features
|
56 |
+
all_features_dict.update(dipeptide_features)
|
57 |
+
|
|
|
|
|
58 |
|
59 |
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
|
60 |
all_features_dict.update(auto_features)
|
|
|
65 |
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
|
66 |
all_features_dict.update(pseudo_features)
|
67 |
|
68 |
+
# Convert feature dictionary to DataFrame, handling missing features
|
69 |
+
feature_df = pd.DataFrame([all_features_dict])
|
70 |
+
|
71 |
+
# Select features and handle missing columns
|
72 |
+
feature_df_selected = feature_df[selected_features].copy() # Use .copy() to avoid SettingWithCopyWarning
|
73 |
+
|
74 |
+
# Fill missing features with 0 (or another appropriate value)
|
75 |
+
feature_df_selected = feature_df_selected.fillna(0)
|
76 |
|
|
|
|
|
77 |
|
78 |
+
feature_array = feature_df_selected.values # Get numpy array directly
|
79 |
|
|
|
80 |
|
81 |
+
# Normalize the features
|
82 |
+
normalized_features = scaler.transform(feature_array)
|
83 |
|
84 |
+
return normalized_features
|
85 |
|
86 |
|
87 |
def predict(sequence):
|
|
|
90 |
if isinstance(features, str) and features.startswith("Error:"):
|
91 |
return features
|
92 |
|
93 |
+
prediction = model.predict(features)[0]
|
94 |
+
probabilities = model.predict_proba(features)[0]
|
95 |
|
96 |
if prediction == 0:
|
97 |
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
|