import gradio as gr import joblib import numpy as np import pandas as pd from propy import AAComposition, Autocorrelation, CTD, PseudoAAC from sklearn.preprocessing import MinMaxScaler import torch from transformers import BertTokenizer, BertModel from lime.lime_tabular import LimeTabularExplainer from math import expm1 # Load AMP Classifier and Scaler model = joblib.load("RF.joblib") scaler = joblib.load("norm (4).joblib") # Load ProtBert tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False) protbert_model = BertModel.from_pretrained("Rostlab/prot_bert") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") protbert_model = protbert_model.to(device).eval() # Define selected features selected_features = ["_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1", "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001", "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V", "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV", "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4", "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26", "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29", "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26", "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24", "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28", "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25", "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19", "APAAC24"] # Create dummy data for LIME initialization sample_data = np.random.rand(100, len(selected_features)) explainer = LimeTabularExplainer( training_data=sample_data, feature_names=selected_features, class_names=["AMP", "Non-AMP"], mode="classification" ) # Feature extraction from sequence def extract_features(sequence): sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"]) if len(sequence) < 10: return "Error: Sequence too short." try: dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence) filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]} ctd_features = CTD.CalculateCTD(sequence) auto_features = Autocorrelation.CalculateAutoTotal(sequence) pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9) all_features_dict = {} all_features_dict.update(ctd_features) all_features_dict.update(filtered_dipeptide_features) all_features_dict.update(auto_features) all_features_dict.update(pseudo_features) feature_df_all = pd.DataFrame([all_features_dict]) normalized_array = scaler.transform(feature_df_all.values) normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns) if not set(selected_features).issubset(normalized_df.columns): return "Error: Some selected features are missing." selected_df = normalized_df[selected_features].fillna(0) return selected_df.values except Exception as e: return f"Error in feature extraction: {str(e)}" # MIC prediction for AMP sequences def predictmic(sequence): sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"]) if len(sequence) < 10: return {"Error": "Sequence too short or invalid."} seq_spaced = ' '.join(list(sequence)) tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512) tokens = {k: v.to(device) for k, v in tokens.items()} with torch.no_grad(): outputs = protbert_model(**tokens) embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1) bacteria_config = { "E.coli": {"model": "coli_xgboost_model.pkl", "scaler": "coli_scaler.pkl", "pca": None}, "S.aureus": {"model": "aur_xgboost_model.pkl", "scaler": "aur_scaler.pkl", "pca": None}, "P.aeruginosa": {"model": "arg_xgboost_model.pkl", "scaler": "arg_scaler.pkl", "pca": None}, "K.Pneumonia": {"model": "pne_mlp_model.pkl", "scaler": "pne_scaler.pkl", "pca": "pne_pca.pkl"} } mic_results = {} for bacterium, cfg in bacteria_config.items(): try: scaler = joblib.load(cfg["scaler"]) scaled = scaler.transform(embedding) transformed = joblib.load(cfg["pca"]).transform(scaled) if cfg["pca"] else scaled model = joblib.load(cfg["model"]) mic_log = model.predict(transformed)[0] mic = round(expm1(mic_log), 3) mic_results[bacterium] = mic except Exception as e: mic_results[bacterium] = f"Error: {str(e)}" return mic_results # Full prediction pipeline def full_prediction(sequence): features = extract_features(sequence) if isinstance(features, str): return features prediction = model.predict(features)[0] probabilities = model.predict_proba(features)[0] amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP" confidence = round(probabilities[prediction] * 100, 2) result = f"Prediction: {amp_result}\nConfidence: {confidence}%\n" if prediction == 0: mic_values = predictmic(sequence) result += "\nPredicted MIC Values (μM):\n" for org, mic in mic_values.items(): result += f"- {org}: {mic}\n" else: result += "\nMIC prediction skipped for Non-AMP sequences.\n" explanation = explainer.explain_instance( data_row=features[0], predict_fn=model.predict_proba, num_features=10 ) result += "\nTop Features Influencing Prediction:\n" for feat, weight in explanation.as_list(): result += f"- {feat}: {round(weight, 4)}\n" return result # Gradio interface iface = gr.Interface( fn=full_prediction, inputs=gr.Textbox(label="Enter Protein Sequence"), outputs=gr.Textbox(label="Results"), title="AMP & MIC Predictor + LIME Explanation", description="Paste an amino acid sequence (≥10 characters). Get AMP classification, MIC predictions, and LIME interpretability insights." ) iface.launch(share=True)