import gradio as gr import joblib import numpy as np import pandas as pd from propy import AAComposition, Autocorrelation, CTD, PseudoAAC from sklearn.preprocessing import MinMaxScaler # Load the pre-trained model and scaler model = joblib.load("RF.joblib") scaler = joblib.load("norm (1).joblib") # Define the list of selected features (IMPORTANT: Keep this consistent with training) selected_features = [ "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1", "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001", "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001", "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001", "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001", "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001", "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001", "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001", "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025", "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V", "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL", "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA", "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV", "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4", "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26", "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29", "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26", "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29", "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24", "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28", "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24", "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21", "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24", "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24", "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28", "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18", "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28", "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25", "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28", "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5", "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19", "APAAC24" ] def extract_features(sequence): """Extracts features from a protein sequence and returns them as a NumPy array.""" try: # Calculate features from different ProPy modules comp_features = AAComposition.CalculateAAComposition(sequence) auto_features = Autocorrelation.CalculateAutoTotal(sequence) ctd_features = CTD.CalculateCTD(sequence) pseudo_features = PseudoAAC.GetAPseudoAAC(sequence) # Use default parameters # Combine all features into a single dictionary all_features = {**comp_features, **auto_features, **ctd_features, **pseudo_features} #print(len(all_features)) # debugging # Convert to DataFrame, selecting only the required features all_features_df = pd.DataFrame([all_features]) all_features_df = all_features_df[selected_features] # Normalize the features using the pre-fitted scaler normalized_features = scaler.transform(all_features_df) return normalized_features except ZeroDivisionError: print("Error: Division by zero encountered in feature calculation. Check your input sequence.") return None # Or handle appropriately except KeyError as e: print(f"Error: Missing feature {e}. Check feature name consistency and ProPy version.") return None # Or handle appropriately except Exception as e: print(f"An unexpected error occurred during feature extraction: {e}") return None # Or handle appropriately def predict(sequence): """Predicts whether the input sequence is an AMP and returns the prediction.""" features = extract_features(sequence) # Check if feature extraction was successful if features is None: return "Error: Could not extract features. Please check the input sequence." # No need to reshape here; extract_features already returns the correct shape prediction = model.predict(features)[0] probabilities = model.predict_proba(features)[0] # Determine output string based on prediction if prediction == 0: return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)" else: return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP" # Gradio interface setup iface = gr.Interface( fn=predict, inputs=gr.Textbox(label="Enter Protein Sequence"), outputs=gr.Label(label="Prediction"), title="AMP Classifier", description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict whether it's an antimicrobial peptide (AMP) or not." ) iface.launch(share=True)