not-lain commited on
Commit
6eb38c2
·
verified ·
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -4,12 +4,14 @@ import torch
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
7
 
8
 
9
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
@@ -20,18 +22,18 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
-
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
34
-
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
 
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ import spaces
8
 
9
 
10
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
12
  # load speech translation checkpoint
13
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
14
+ asr_pipe.to('cuda')
15
 
16
  # load text-to-speech checkpoint and speaker embeddings
17
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
24
 
25
+ @spaces.GPU
26
  def translate(audio):
27
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
28
  return outputs["text"]
29
 
30
+ @spaces.GPU
31
  def synthesise(text):
32
  inputs = processor(text=text, return_tensors="pt")
33
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
  return speech.cpu()
35
 
36
+ @spaces.GPU
37
  def speech_to_speech_translation(audio):
38
  translated_text = translate(audio)
39
  synthesised_speech = synthesise(translated_text)