tststml
Browse files- app.py +37 -27
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -3,6 +3,9 @@ import torch
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from torch import Tensor
|
| 5 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def last_token_pool(last_hidden_states: Tensor,
|
| 8 |
attention_mask: Tensor) -> Tensor:
|
|
@@ -21,37 +24,44 @@ st.title("Text Similarity Model")
|
|
| 21 |
|
| 22 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
if
|
| 28 |
-
|
| 29 |
-
get_detailed_instruct(task, query1),
|
| 30 |
-
get_detailed_instruct(task, query2)
|
| 31 |
-
]
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Get embeddings
|
| 41 |
-
max_length = 4096
|
| 42 |
-
input_texts = queries + passages
|
| 43 |
-
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt")
|
| 44 |
-
|
| 45 |
-
outputs = model(**batch_dict)
|
| 46 |
-
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 47 |
-
|
| 48 |
-
# Normalize embeddings
|
| 49 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 50 |
-
|
| 51 |
-
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
| 52 |
-
|
| 53 |
-
st.write("Similarity scores:", scores.tolist())
|
| 54 |
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from torch import Tensor
|
| 5 |
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
import textract
|
| 7 |
+
import docx2txt
|
| 8 |
+
import pdfplumber
|
| 9 |
|
| 10 |
def last_token_pool(last_hidden_states: Tensor,
|
| 11 |
attention_mask: Tensor) -> Tensor:
|
|
|
|
| 24 |
|
| 25 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
| 26 |
|
| 27 |
+
docs = st.sidebar.file_uploader("Upload documents", accept_multiple_files=True, type=['txt','pdf','xlsx','docx'])
|
| 28 |
+
query = st.text_input("Enter search query")
|
| 29 |
+
click = st.button("Search")
|
| 30 |
|
| 31 |
+
if click and query:
|
| 32 |
+
doc_contents = []
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
for doc in docs:
|
| 35 |
+
# Extract text from each document
|
| 36 |
+
doc_text = extract_text(doc)
|
| 37 |
+
doc_contents.append(doc_text)
|
| 38 |
|
| 39 |
+
doc_embeddings = get_embeddings(doc_contents)
|
| 40 |
+
query_embedding = get_embedding(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
scores = compute_similarity(query_embedding, doc_embeddings)
|
| 43 |
+
ranked_docs = get_ranked_docs(scores)
|
| 44 |
|
| 45 |
+
st.write("Most Relevant Documents")
|
| 46 |
+
for doc, score in ranked_docs:
|
| 47 |
+
st.write(f"{doc.name} (score: {score:.2f})")
|
| 48 |
+
|
| 49 |
+
def extract_text(doc):
|
| 50 |
+
if doc.type == 'text/plain':
|
| 51 |
+
return doc.getvalue().decode("utf-8")
|
| 52 |
+
|
| 53 |
+
if doc.type == "application/pdf":
|
| 54 |
+
with pdfplumber.open(doc) as pdf:
|
| 55 |
+
pages = [page.extract_text() for page in pdf.pages]
|
| 56 |
+
return "\n".join(pages)
|
| 57 |
+
|
| 58 |
+
if doc.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 59 |
+
return docx2txt.process(doc)
|
| 60 |
+
|
| 61 |
+
if doc.name.endswith(".xlsx"):
|
| 62 |
+
text = textract.process(doc)
|
| 63 |
+
return text.decode("utf-8")
|
| 64 |
+
|
| 65 |
+
return None
|
| 66 |
|
| 67 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,5 @@
|
|
| 1 |
torch
|
| 2 |
-
transformers
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
+
transformers
|
| 3 |
+
textract
|
| 4 |
+
docx2txt
|
| 5 |
+
pdfplumber
|