test 2
Browse files- app.py +49 -83
- requirements.txt +3 -1
app.py
CHANGED
@@ -2,12 +2,7 @@ import streamlit as st
|
|
2 |
import os
|
3 |
from PyPDF2 import PdfReader
|
4 |
import openpyxl
|
5 |
-
from
|
6 |
-
from langchain.embeddings import GooglePalmEmbeddings
|
7 |
-
from langchain.llms import HuggingFaceTransformers # Updated import
|
8 |
-
from langchain.vectorstores import FAISS
|
9 |
-
from langchain.chains import ConversationalRetrievalChain
|
10 |
-
from langchain.memory import ConversationBufferMemory
|
11 |
|
12 |
os.environ['GOOGLE_API_KEY'] = 'AIzaSyD8uzXToT4I2ABs7qo_XiuKh8-L2nuWCEM'
|
13 |
|
@@ -20,88 +15,59 @@ def get_pdf_text(pdf_docs):
|
|
20 |
return text
|
21 |
|
22 |
def get_excel_text(excel_docs):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
def get_text_chunks(text):
|
34 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
35 |
-
chunks = text_splitter.split_text(text)
|
36 |
-
return chunks
|
37 |
-
|
38 |
-
def get_vector_store(text_chunks):
|
39 |
-
embeddings = GooglePalmEmbeddings()
|
40 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
41 |
-
return vector_store
|
42 |
-
|
43 |
-
def get_conversational_chain(vector_store):
|
44 |
-
llm = HuggingFaceTransformers(model_name="HanNayeoniee/LHK_DPO_v1")
|
45 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
46 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vector_store.as_retriever(), memory=memory)
|
47 |
-
return conversation_chain
|
48 |
|
49 |
-
def get_user_input(user_question):
|
50 |
with st.container():
|
51 |
-
response = st.session_state.
|
52 |
-
st.
|
53 |
-
file_contents = ""
|
54 |
-
left , right = st.columns((2,1))
|
55 |
-
with left:
|
56 |
-
for i, message in enumerate(st.session_state.chatHistory):
|
57 |
-
if i % 2 == 0:
|
58 |
-
st.write("User: ", message.content)
|
59 |
-
else:
|
60 |
-
st.write("Bot: ", message.content)
|
61 |
-
st.success("Done !")
|
62 |
-
with right:
|
63 |
-
for message in st.session_state.chatHistory:
|
64 |
-
file_contents += f"{message.content}\n"
|
65 |
-
file_name = "Chat_History.txt"
|
66 |
|
67 |
def main():
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
st.session_state.conversation = get_conversational_chain(vector_store)
|
93 |
-
st.success("Excel file processed successfully!")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
main()
|
|
|
2 |
import os
|
3 |
from PyPDF2 import PdfReader
|
4 |
import openpyxl
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
os.environ['GOOGLE_API_KEY'] = 'AIzaSyD8uzXToT4I2ABs7qo_XiuKh8-L2nuWCEM'
|
8 |
|
|
|
15 |
return text
|
16 |
|
17 |
def get_excel_text(excel_docs):
|
18 |
+
text = ""
|
19 |
+
for excel_doc in excel_docs:
|
20 |
+
workbook = openpyxl.load_workbook(filename=excel_doc)
|
21 |
+
for sheet in workbook:
|
22 |
+
for row in sheet:
|
23 |
+
for cell in row:
|
24 |
+
text += str(cell.value) + " "
|
25 |
+
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def get_user_input(user_question, qa_pipeline):
|
28 |
with st.container():
|
29 |
+
response = qa_pipeline(question=user_question, context=st.session_state.raw_text)
|
30 |
+
st.write("Answer:", response["answer"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def main():
|
33 |
+
st.set_page_config("DocChat")
|
34 |
+
st.header("DocChat - Chat with multiple documents")
|
35 |
+
st.write("---")
|
36 |
+
|
37 |
+
qa_pipeline = None
|
38 |
+
|
39 |
+
with st.container():
|
40 |
+
with st.sidebar:
|
41 |
+
st.title("Settings")
|
42 |
+
st.subheader("Upload Documents")
|
43 |
+
st.markdown("**PDF files:**")
|
44 |
+
pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True)
|
45 |
+
if st.button("Process PDF file"):
|
46 |
+
with st.spinner("Processing PDFs..."):
|
47 |
+
raw_text = get_pdf_text(pdf_docs)
|
48 |
+
st.session_state.raw_text = raw_text
|
49 |
+
st.success("PDF processed successfully!")
|
50 |
|
51 |
+
st.markdown("**Excel files:**")
|
52 |
+
excel_docs = st.file_uploader("Upload Excel Files", accept_multiple_files=True)
|
53 |
+
if st.button("Process Excel file"):
|
54 |
+
with st.spinner("Processing Excel files..."):
|
55 |
+
raw_text = get_excel_text(excel_docs)
|
56 |
+
st.session_state.raw_text = raw_text
|
57 |
+
st.success("Excel file processed successfully!")
|
|
|
|
|
58 |
|
59 |
+
with st.container():
|
60 |
+
st.subheader("Document Q&A")
|
61 |
+
st.write('Ask a question : ')
|
62 |
+
user_question = st.text_input("Ask a Question from the document")
|
63 |
+
if user_question:
|
64 |
+
if not qa_pipeline and "raw_text" in st.session_state:
|
65 |
+
model_name = "notabaka/DocQA"
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
68 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
69 |
+
if qa_pipeline:
|
70 |
+
get_user_input(user_question, qa_pipeline)
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
+
main()
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ langchain
|
|
3 |
PyPDF2
|
4 |
faiss-cpu
|
5 |
streamlit
|
6 |
-
openpyxl
|
|
|
|
|
|
3 |
PyPDF2
|
4 |
faiss-cpu
|
5 |
streamlit
|
6 |
+
openpyxl
|
7 |
+
transformers
|
8 |
+
torch
|