notsakeeb commited on
Commit
362c777
·
verified ·
1 Parent(s): b35adcd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -209
app.py CHANGED
@@ -33,14 +33,14 @@ llm = ChatGoogleGenerativeAI(
33
  llm_with_tools = llm.bind_tools(toolset)
34
 
35
  sys_prompt_file = open("sys_prompt.txt")
36
- SYSTEM_PROMPT = sys_prompt_file.read()
37
 
38
  class AgentState(TypedDict):
39
  messages: Annotated[list[AnyMessage], add_messages]
40
 
41
  def assistant(state: AgentState):
42
  return {
43
- "messages": [llm_with_tools.invoke(state["messages"])],
44
  }
45
 
46
  builder = StateGraph(AgentState)
@@ -57,250 +57,141 @@ builder.add_edge("tools","assistant")
57
 
58
  gaia_agent = builder.compile()
59
 
60
- def run_and_submit_all(profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  """
62
- Fetches all questions, runs the agent on them, submits all answers,
63
- and displays the results. Handles attachments if present.
64
  """
65
  # --- Determine HF Space Runtime URL and Repo URL ---
66
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
67
  if profile:
68
  username= f"{profile.username}"
69
  print(f"User logged in: {username}")
70
  else:
71
  print("User not logged in.")
72
  return "Please Login to Hugging Face with the button.", None
73
-
74
- # 1. Instantiate Agent (modify this part to create your agent)
 
 
 
 
75
  try:
76
- agent = gaia_agent
77
  except Exception as e:
78
  print(f"Error instantiating agent: {e}")
79
  return f"Error initializing agent: {e}", None
80
-
81
- # In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
82
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
83
  print(agent_code)
84
-
85
  # 2. Fetch Questions
86
- questions_data = get_all_questions()
87
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  # 3. Run your Agent
89
  results_log = []
90
  answers_payload = []
91
  print(f"Running agent on {len(questions_data)} questions...")
92
-
93
  for item in questions_data:
94
  task_id = item.get("task_id")
95
  question_text = item.get("question")
96
-
97
  if not task_id or question_text is None:
98
  print(f"Skipping item with missing task_id or question: {item}")
99
  continue
100
-
101
- # 2.2 Handle attachment if present
102
- attachment_info = None
103
- if "file_name" in item and item["file_name"]:
104
- file_name = item.get("file_name")
105
- attachment_info = handle_attachment(task_id, file_name)
106
- print(f"Attachment handling result: {attachment_info['status']}")
107
-
108
  try:
109
- # Prepare messages based on attachment handling
110
- messages = [
111
- SystemMessage(content=SYSTEM_PROMPT),
112
- SystemMessage(content=f"Current task id: {task_id}")
113
- ]
114
-
115
- # If we have an attachment that Claude can process directly
116
- if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
117
- # Encode content for direct inclusion
118
- encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
119
- content_type = attachment_info["content_type"]
120
-
121
- # Create multimodal message
122
- if content_type.startswith('image/'):
123
- multimodal_content = [
124
- {"type": "text", "text": question_text},
125
- {
126
- "type": "image",
127
- "source": {
128
- "type": "base64",
129
- "media_type": content_type,
130
- "data": encoded_content
131
- }
132
- }
133
- ]
134
- elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
135
- multimodal_content = [
136
- {"type": "text", "text": question_text},
137
- {
138
- "type": "file",
139
- "source": {
140
- "type": "base64",
141
- "media_type": content_type,
142
- "data": encoded_content
143
- },
144
- "name": attachment_info["file_name"]
145
- }
146
- ]
147
-
148
- messages.append(HumanMessage(content=multimodal_content))
149
-
150
- # If we have an attachment that needs tool processing
151
- elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
152
- # Add info about the file to the question
153
- file_info = (
154
- f"{question_text}\n\n"
155
- f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
156
- f"File type: {attachment_info['content_type']}"
157
- )
158
- messages.append(HumanMessage(content=file_info))
159
-
160
- # If no attachment or error with attachment
161
- else:
162
- messages.append(HumanMessage(content=question_text))
163
-
164
- # Invoke the agent with the prepared messages
165
- agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
166
- submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
167
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
168
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
169
-
170
  except Exception as e:
171
- print(f"Error running agent on task {task_id}: {e}")
172
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
173
-
174
  if not answers_payload:
175
  print("Agent did not produce any answers to submit.")
176
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
177
-
178
  # 4. Prepare Submission
179
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
180
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
181
  print(status_update)
182
-
183
- # 5. Submit
184
- return submit(submission_data, results_log)
185
-
186
- def run_and_submit_one( profile: gr.OAuthProfile | None):
187
- # --- Determine HF Space Runtime URL and Repo URL ---
188
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
189
-
190
- if profile:
191
- username= f"{profile.username}"
192
- print(f"User logged in: {username}")
193
- else:
194
- print("User not logged in.")
195
- return "Please Login to Hugging Face with the button.", None
196
-
197
- # 1. Instantiate Agent ( modify this part to create your agent)
198
- try:
199
- agent = gaia_agent
200
- except Exception as e:
201
- print(f"Error instantiating agent: {e}")
202
- return f"Error initializing agent: {e}", None
203
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
204
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
205
- print(agent_code)
206
-
207
- # 2. Fetch Questions
208
- questions_data = get_one_random_question()
209
- print("questions_data:", questions_data)
210
-
211
- # 2.2 Handle attachment if present
212
- attachment_info = None
213
- if "file_name" in questions_data and questions_data["file_name"]:
214
- task_id = questions_data.get("task_id")
215
- file_name = questions_data.get("file_name")
216
- attachment_info = handle_attachment(task_id, file_name)
217
- print(f"Attachment handling result: {attachment_info['status']}")
218
 
219
- # 3. Run your Agent
220
- results_log = []
221
- answers_payload = []
222
- print(f"Running agent on {len(questions_data)} questions...")
223
-
224
- task_id = questions_data.get("task_id")
225
- question_text = questions_data.get("question")
226
-
227
- if not task_id or question_text is None:
228
- print(f"Skipping item with missing task_id or question")
229
  try:
230
- # Prepare messages based on attachment handling
231
- messages = [
232
- SystemMessage(content=SYSTEM_PROMPT),
233
- SystemMessage(content=f"Current task id: {task_id}")
234
- ]
235
-
236
- # If we have an attachment that Claude can process directly
237
- if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
238
- # Encode content for direct inclusion
239
- encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
240
- content_type = attachment_info["content_type"]
241
-
242
- # Create multimodal message
243
- if content_type.startswith('image/'):
244
- multimodal_content = [
245
- {"type": "text", "text": question_text},
246
- {
247
- "type": "image",
248
- "source": {
249
- "type": "base64",
250
- "media_type": content_type,
251
- "data": encoded_content
252
- }
253
- }
254
- ]
255
- elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
256
- multimodal_content = [
257
- {"type": "text", "text": question_text},
258
- {
259
- "type": "file",
260
- "source": {
261
- "type": "base64",
262
- "media_type": content_type,
263
- "data": encoded_content
264
- },
265
- "name": attachment_info["file_name"]
266
- }
267
- ]
268
-
269
- messages.append(HumanMessage(content=multimodal_content))
270
-
271
- # If we have an attachment that needs tool processing
272
- elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
273
- # Add info about the file to the question
274
- file_info = (
275
- f"{question_text}\n\n"
276
- f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
277
- f"File type: {attachment_info['content_type']}"
278
- )
279
- messages.append(HumanMessage(content=file_info))
280
-
281
- # If no attachment or error with attachment
282
- else:
283
- messages.append(HumanMessage(content=question_text))
284
-
285
- # Invoke the agent with the prepared messages
286
- agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
287
- submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
288
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
289
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
290
  except Exception as e:
291
- print(f"Error running agent on task {task_id}: {e}")
292
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
293
-
294
- if not answers_payload:
295
- print("Agent did not produce any answers to submit.")
296
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
297
 
298
- # 4. Prepare Submission
299
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
300
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
301
- print(status_update)
302
-
303
- return submit(submission_data, results_log)
304
 
305
  # --- Build Gradio Interface using Blocks ---
306
  with gr.Blocks() as demo:
@@ -321,7 +212,6 @@ with gr.Blocks() as demo:
321
  gr.LoginButton()
322
 
323
  run_button = gr.Button("Run Evaluation & Submit All Answers")
324
- run_one_button = gr.Button("Run one question and submit")
325
 
326
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
327
  # Removed max_rows=10 from DataFrame constructor
@@ -331,10 +221,6 @@ with gr.Blocks() as demo:
331
  fn=run_and_submit_all,
332
  outputs=[status_output, results_table]
333
  )
334
- run_one_button.click(
335
- fn=run_and_submit_one,
336
- outputs=[status_output, results_table]
337
- )
338
 
339
  if __name__ == "__main__":
340
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
33
  llm_with_tools = llm.bind_tools(toolset)
34
 
35
  sys_prompt_file = open("sys_prompt.txt")
36
+ sys_prompt = sys_prompt_file.read()
37
 
38
  class AgentState(TypedDict):
39
  messages: Annotated[list[AnyMessage], add_messages]
40
 
41
  def assistant(state: AgentState):
42
  return {
43
+ "messages": [llm_with_tools.invoke([sys_prompt]+state["messages"])],
44
  }
45
 
46
  builder = StateGraph(AgentState)
 
57
 
58
  gaia_agent = builder.compile()
59
 
60
+ class BasicAgent:
61
+ """A langgraph agent."""
62
+ def __init__(self):
63
+ print("BasicAgent initialized.")
64
+ self.graph = gaia_agent
65
+
66
+ def __call__(self, question: str) -> str:
67
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
68
+ # Wrap the question in a HumanMessage from langchain_core
69
+ messages = [HumanMessage(content=question)]
70
+ messages = self.graph.invoke({"messages": messages})
71
+ answer = messages['messages'][-1].content
72
+ return answer[14:]
73
+
74
+
75
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
76
  """
77
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
78
+ and displays the results.
79
  """
80
  # --- Determine HF Space Runtime URL and Repo URL ---
81
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
82
+
83
  if profile:
84
  username= f"{profile.username}"
85
  print(f"User logged in: {username}")
86
  else:
87
  print("User not logged in.")
88
  return "Please Login to Hugging Face with the button.", None
89
+
90
+ api_url = DEFAULT_API_URL
91
+ questions_url = f"{api_url}/questions"
92
+ submit_url = f"{api_url}/submit"
93
+
94
+ # 1. Instantiate Agent ( modify this part to create your agent)
95
  try:
96
+ agent = BasicAgent()
97
  except Exception as e:
98
  print(f"Error instantiating agent: {e}")
99
  return f"Error initializing agent: {e}", None
100
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
101
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
102
  print(agent_code)
103
+
104
  # 2. Fetch Questions
105
+ print(f"Fetching questions from: {questions_url}")
106
+ try:
107
+ response = requests.get(questions_url, timeout=15)
108
+ response.raise_for_status()
109
+ questions_data = response.json()
110
+ if not questions_data:
111
+ print("Fetched questions list is empty.")
112
+ return "Fetched questions list is empty or invalid format.", None
113
+ print(f"Fetched {len(questions_data)} questions.")
114
+ except requests.exceptions.RequestException as e:
115
+ print(f"Error fetching questions: {e}")
116
+ return f"Error fetching questions: {e}", None
117
+ except requests.exceptions.JSONDecodeError as e:
118
+ print(f"Error decoding JSON response from questions endpoint: {e}")
119
+ print(f"Response text: {response.text[:500]}")
120
+ return f"Error decoding server response for questions: {e}", None
121
+ except Exception as e:
122
+ print(f"An unexpected error occurred fetching questions: {e}")
123
+ return f"An unexpected error occurred fetching questions: {e}", None
124
+
125
  # 3. Run your Agent
126
  results_log = []
127
  answers_payload = []
128
  print(f"Running agent on {len(questions_data)} questions...")
 
129
  for item in questions_data:
130
  task_id = item.get("task_id")
131
  question_text = item.get("question")
 
132
  if not task_id or question_text is None:
133
  print(f"Skipping item with missing task_id or question: {item}")
134
  continue
 
 
 
 
 
 
 
 
135
  try:
136
+ submitted_answer = agent(question_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
138
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
139
  except Exception as e:
140
+ print(f"Error running agent on task {task_id}: {e}")
141
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
142
+
143
  if not answers_payload:
144
  print("Agent did not produce any answers to submit.")
145
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
146
+
147
  # 4. Prepare Submission
148
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
149
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
150
  print(status_update)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
+ # 5. Submit
153
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
 
 
 
 
 
 
 
 
154
  try:
155
+ response = requests.post(submit_url, json=submission_data, timeout=60)
156
+ response.raise_for_status()
157
+ result_data = response.json()
158
+ final_status = (
159
+ f"Submission Successful!\n"
160
+ f"User: {result_data.get('username')}\n"
161
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
162
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
163
+ f"Message: {result_data.get('message', 'No message received.')}"
164
+ )
165
+ print("Submission successful.")
166
+ results_df = pd.DataFrame(results_log)
167
+ return final_status, results_df
168
+ except requests.exceptions.HTTPError as e:
169
+ error_detail = f"Server responded with status {e.response.status_code}."
170
+ try:
171
+ error_json = e.response.json()
172
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
173
+ except requests.exceptions.JSONDecodeError:
174
+ error_detail += f" Response: {e.response.text[:500]}"
175
+ status_message = f"Submission Failed: {error_detail}"
176
+ print(status_message)
177
+ results_df = pd.DataFrame(results_log)
178
+ return status_message, results_df
179
+ except requests.exceptions.Timeout:
180
+ status_message = "Submission Failed: The request timed out."
181
+ print(status_message)
182
+ results_df = pd.DataFrame(results_log)
183
+ return status_message, results_df
184
+ except requests.exceptions.RequestException as e:
185
+ status_message = f"Submission Failed: Network error - {e}"
186
+ print(status_message)
187
+ results_df = pd.DataFrame(results_log)
188
+ return status_message, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  except Exception as e:
190
+ status_message = f"An unexpected error occurred during submission: {e}"
191
+ print(status_message)
192
+ results_df = pd.DataFrame(results_log)
193
+ return status_message, results_df
 
 
194
 
 
 
 
 
 
 
195
 
196
  # --- Build Gradio Interface using Blocks ---
197
  with gr.Blocks() as demo:
 
212
  gr.LoginButton()
213
 
214
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
215
 
216
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
217
  # Removed max_rows=10 from DataFrame constructor
 
221
  fn=run_and_submit_all,
222
  outputs=[status_output, results_table]
223
  )
 
 
 
 
224
 
225
  if __name__ == "__main__":
226
  print("\n" + "-"*30 + " App Starting " + "-"*30)