Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,10 @@ from langgraph.graph.message import add_messages
|
|
8 |
from langchain_core.messages import AnyMessage, HumanMessage
|
9 |
from langgraph.graph import START, StateGraph
|
10 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
@@ -16,136 +20,285 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
19 |
-
tivaly_api_key = os.getenv()
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
-
Fetches all questions, runs the
|
32 |
-
and displays the results.
|
33 |
"""
|
34 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
35 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
36 |
-
|
37 |
if profile:
|
38 |
username= f"{profile.username}"
|
39 |
print(f"User logged in: {username}")
|
40 |
else:
|
41 |
print("User not logged in.")
|
42 |
return "Please Login to Hugging Face with the button.", None
|
43 |
-
|
44 |
-
|
45 |
-
questions_url = f"{api_url}/questions"
|
46 |
-
submit_url = f"{api_url}/submit"
|
47 |
-
|
48 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
49 |
try:
|
50 |
-
agent =
|
51 |
except Exception as e:
|
52 |
print(f"Error instantiating agent: {e}")
|
53 |
return f"Error initializing agent: {e}", None
|
54 |
-
|
|
|
55 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
56 |
print(agent_code)
|
57 |
-
|
58 |
# 2. Fetch Questions
|
59 |
-
|
60 |
-
|
61 |
-
response = requests.get(questions_url, timeout=15)
|
62 |
-
response.raise_for_status()
|
63 |
-
questions_data = response.json()
|
64 |
-
if not questions_data:
|
65 |
-
print("Fetched questions list is empty.")
|
66 |
-
return "Fetched questions list is empty or invalid format.", None
|
67 |
-
print(f"Fetched {len(questions_data)} questions.")
|
68 |
-
except requests.exceptions.RequestException as e:
|
69 |
-
print(f"Error fetching questions: {e}")
|
70 |
-
return f"Error fetching questions: {e}", None
|
71 |
-
except requests.exceptions.JSONDecodeError as e:
|
72 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
73 |
-
print(f"Response text: {response.text[:500]}")
|
74 |
-
return f"Error decoding server response for questions: {e}", None
|
75 |
-
except Exception as e:
|
76 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
77 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
78 |
-
|
79 |
# 3. Run your Agent
|
80 |
results_log = []
|
81 |
answers_payload = []
|
82 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
83 |
for item in questions_data:
|
84 |
task_id = item.get("task_id")
|
85 |
question_text = item.get("question")
|
|
|
86 |
if not task_id or question_text is None:
|
87 |
print(f"Skipping item with missing task_id or question: {item}")
|
88 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
try:
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
92 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
93 |
except Exception as e:
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
if not answers_payload:
|
98 |
print("Agent did not produce any answers to submit.")
|
99 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
100 |
-
|
101 |
# 4. Prepare Submission
|
102 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
103 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
104 |
print(status_update)
|
105 |
-
|
106 |
# 5. Submit
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
try:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
|
|
149 |
|
150 |
# --- Build Gradio Interface using Blocks ---
|
151 |
with gr.Blocks() as demo:
|
@@ -153,11 +306,9 @@ with gr.Blocks() as demo:
|
|
153 |
gr.Markdown(
|
154 |
"""
|
155 |
**Instructions:**
|
156 |
-
|
157 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
158 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
159 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
160 |
-
|
161 |
---
|
162 |
**Disclaimers:**
|
163 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
@@ -168,6 +319,7 @@ with gr.Blocks() as demo:
|
|
168 |
gr.LoginButton()
|
169 |
|
170 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
171 |
|
172 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
173 |
# Removed max_rows=10 from DataFrame constructor
|
@@ -177,6 +329,10 @@ with gr.Blocks() as demo:
|
|
177 |
fn=run_and_submit_all,
|
178 |
outputs=[status_output, results_table]
|
179 |
)
|
|
|
|
|
|
|
|
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
8 |
from langchain_core.messages import AnyMessage, HumanMessage
|
9 |
from langgraph.graph import START, StateGraph
|
10 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
+
from ToolSet import toolset
|
12 |
+
from utils.final_answer import extract_final_answer
|
13 |
+
from utils.handle_file import handle_attachment
|
14 |
+
from assignment_api import get_all_questions, get_one_random_question, submit
|
15 |
|
16 |
# (Keep Constants as is)
|
17 |
# --- Constants ---
|
|
|
20 |
# --- Basic Agent Definition ---
|
21 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
22 |
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
23 |
+
tivaly_api_key = os.getenv("TAVILY_API_KEY")
|
24 |
+
|
25 |
+
llm = ChatGoogleGenerativeAI(
|
26 |
+
model="gemini-2.0-flash",
|
27 |
+
temperature=0,
|
28 |
+
google_api_key = gemini_api_key
|
29 |
+
)
|
30 |
+
|
31 |
+
llm_with_tools = llm.bind_tools(toolset)
|
32 |
+
|
33 |
+
sys_prompt_file = open("sys_prompt.txt")
|
34 |
+
sys_prompt = sys_prompt_file.read()
|
35 |
+
|
36 |
+
class AgentState(TypedDict):
|
37 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
38 |
+
|
39 |
+
def assistant(state: AgentState):
|
40 |
+
return {
|
41 |
+
"messages": [llm_with_tools.invoke([sys_prompt]+state["messages"])],
|
42 |
+
}
|
43 |
+
|
44 |
+
builder = StateGraph(AgentState)
|
45 |
+
|
46 |
+
builder.add_node("assistant", assistant)
|
47 |
+
builder.add_node("tools", ToolNode(available_tools))
|
48 |
+
|
49 |
+
builder.add_edge(START, "assistant")
|
50 |
+
builder.add_conditional_edges(
|
51 |
+
"assistant",
|
52 |
+
tools_condition
|
53 |
+
)
|
54 |
+
builder.add_edge("tools","assistant")
|
55 |
+
|
56 |
+
gaia_agent = builder.compile()
|
57 |
+
|
58 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
59 |
"""
|
60 |
+
Fetches all questions, runs the agent on them, submits all answers,
|
61 |
+
and displays the results. Handles attachments if present.
|
62 |
"""
|
63 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
64 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
65 |
if profile:
|
66 |
username= f"{profile.username}"
|
67 |
print(f"User logged in: {username}")
|
68 |
else:
|
69 |
print("User not logged in.")
|
70 |
return "Please Login to Hugging Face with the button.", None
|
71 |
+
|
72 |
+
# 1. Instantiate Agent (modify this part to create your agent)
|
|
|
|
|
|
|
|
|
73 |
try:
|
74 |
+
agent = my_agent
|
75 |
except Exception as e:
|
76 |
print(f"Error instantiating agent: {e}")
|
77 |
return f"Error initializing agent: {e}", None
|
78 |
+
|
79 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
|
80 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
81 |
print(agent_code)
|
82 |
+
|
83 |
# 2. Fetch Questions
|
84 |
+
questions_data = get_all_questions()
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# 3. Run your Agent
|
87 |
results_log = []
|
88 |
answers_payload = []
|
89 |
print(f"Running agent on {len(questions_data)} questions...")
|
90 |
+
|
91 |
for item in questions_data:
|
92 |
task_id = item.get("task_id")
|
93 |
question_text = item.get("question")
|
94 |
+
|
95 |
if not task_id or question_text is None:
|
96 |
print(f"Skipping item with missing task_id or question: {item}")
|
97 |
continue
|
98 |
+
|
99 |
+
# 2.2 Handle attachment if present
|
100 |
+
attachment_info = None
|
101 |
+
if "file_name" in item and item["file_name"]:
|
102 |
+
file_name = item.get("file_name")
|
103 |
+
attachment_info = handle_attachment(task_id, file_name)
|
104 |
+
print(f"Attachment handling result: {attachment_info['status']}")
|
105 |
+
|
106 |
try:
|
107 |
+
# Prepare messages based on attachment handling
|
108 |
+
messages = [
|
109 |
+
SystemMessage(content=SYSTEM_PROMPT),
|
110 |
+
SystemMessage(content=f"Current task id: {task_id}")
|
111 |
+
]
|
112 |
+
|
113 |
+
# If we have an attachment that Claude can process directly
|
114 |
+
if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
|
115 |
+
# Encode content for direct inclusion
|
116 |
+
encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
|
117 |
+
content_type = attachment_info["content_type"]
|
118 |
+
|
119 |
+
# Create multimodal message
|
120 |
+
if content_type.startswith('image/'):
|
121 |
+
multimodal_content = [
|
122 |
+
{"type": "text", "text": question_text},
|
123 |
+
{
|
124 |
+
"type": "image",
|
125 |
+
"source": {
|
126 |
+
"type": "base64",
|
127 |
+
"media_type": content_type,
|
128 |
+
"data": encoded_content
|
129 |
+
}
|
130 |
+
}
|
131 |
+
]
|
132 |
+
elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
|
133 |
+
multimodal_content = [
|
134 |
+
{"type": "text", "text": question_text},
|
135 |
+
{
|
136 |
+
"type": "file",
|
137 |
+
"source": {
|
138 |
+
"type": "base64",
|
139 |
+
"media_type": content_type,
|
140 |
+
"data": encoded_content
|
141 |
+
},
|
142 |
+
"name": attachment_info["file_name"]
|
143 |
+
}
|
144 |
+
]
|
145 |
+
|
146 |
+
messages.append(HumanMessage(content=multimodal_content))
|
147 |
+
|
148 |
+
# If we have an attachment that needs tool processing
|
149 |
+
elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
|
150 |
+
# Add info about the file to the question
|
151 |
+
file_info = (
|
152 |
+
f"{question_text}\n\n"
|
153 |
+
f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
|
154 |
+
f"File type: {attachment_info['content_type']}"
|
155 |
+
)
|
156 |
+
messages.append(HumanMessage(content=file_info))
|
157 |
+
|
158 |
+
# If no attachment or error with attachment
|
159 |
+
else:
|
160 |
+
messages.append(HumanMessage(content=question_text))
|
161 |
+
|
162 |
+
# Invoke the agent with the prepared messages
|
163 |
+
agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
|
164 |
+
submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
|
165 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
166 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
167 |
+
|
168 |
except Exception as e:
|
169 |
+
print(f"Error running agent on task {task_id}: {e}")
|
170 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
171 |
+
|
172 |
if not answers_payload:
|
173 |
print("Agent did not produce any answers to submit.")
|
174 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
175 |
+
|
176 |
# 4. Prepare Submission
|
177 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
178 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
179 |
print(status_update)
|
180 |
+
|
181 |
# 5. Submit
|
182 |
+
return submit(submission_data, results_log)
|
183 |
+
|
184 |
+
def run_and_submit_one( profile: gr.OAuthProfile | None):
|
185 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
186 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
187 |
+
|
188 |
+
if profile:
|
189 |
+
username= f"{profile.username}"
|
190 |
+
print(f"User logged in: {username}")
|
191 |
+
else:
|
192 |
+
print("User not logged in.")
|
193 |
+
return "Please Login to Hugging Face with the button.", None
|
194 |
+
|
195 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
196 |
try:
|
197 |
+
agent = my_agent
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error instantiating agent: {e}")
|
200 |
+
return f"Error initializing agent: {e}", None
|
201 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
202 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
203 |
+
print(agent_code)
|
204 |
+
|
205 |
+
# 2. Fetch Questions
|
206 |
+
questions_data = get_one_random_question()
|
207 |
+
print("questions_data:", questions_data)
|
208 |
+
|
209 |
+
# 2.2 Handle attachment if present
|
210 |
+
attachment_info = None
|
211 |
+
if "file_name" in questions_data and questions_data["file_name"]:
|
212 |
+
task_id = questions_data.get("task_id")
|
213 |
+
file_name = questions_data.get("file_name")
|
214 |
+
attachment_info = handle_attachment(task_id, file_name)
|
215 |
+
print(f"Attachment handling result: {attachment_info['status']}")
|
216 |
+
|
217 |
+
# 3. Run your Agent
|
218 |
+
results_log = []
|
219 |
+
answers_payload = []
|
220 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
221 |
+
|
222 |
+
task_id = questions_data.get("task_id")
|
223 |
+
question_text = questions_data.get("question")
|
224 |
+
|
225 |
+
if not task_id or question_text is None:
|
226 |
+
print(f"Skipping item with missing task_id or question")
|
227 |
+
try:
|
228 |
+
# Prepare messages based on attachment handling
|
229 |
+
messages = [
|
230 |
+
SystemMessage(content=SYSTEM_PROMPT),
|
231 |
+
SystemMessage(content=f"Current task id: {task_id}")
|
232 |
+
]
|
233 |
+
|
234 |
+
# If we have an attachment that Claude can process directly
|
235 |
+
if attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "direct":
|
236 |
+
# Encode content for direct inclusion
|
237 |
+
encoded_content = base64.b64encode(attachment_info["raw_content"]).decode('utf-8')
|
238 |
+
content_type = attachment_info["content_type"]
|
239 |
+
|
240 |
+
# Create multimodal message
|
241 |
+
if content_type.startswith('image/'):
|
242 |
+
multimodal_content = [
|
243 |
+
{"type": "text", "text": question_text},
|
244 |
+
{
|
245 |
+
"type": "image",
|
246 |
+
"source": {
|
247 |
+
"type": "base64",
|
248 |
+
"media_type": content_type,
|
249 |
+
"data": encoded_content
|
250 |
+
}
|
251 |
+
}
|
252 |
+
]
|
253 |
+
elif content_type == "application/pdf" or "spreadsheet" in content_type or "excel" in content_type or "csv" in content_type:
|
254 |
+
multimodal_content = [
|
255 |
+
{"type": "text", "text": question_text},
|
256 |
+
{
|
257 |
+
"type": "file",
|
258 |
+
"source": {
|
259 |
+
"type": "base64",
|
260 |
+
"media_type": content_type,
|
261 |
+
"data": encoded_content
|
262 |
+
},
|
263 |
+
"name": attachment_info["file_name"]
|
264 |
+
}
|
265 |
+
]
|
266 |
+
|
267 |
+
messages.append(HumanMessage(content=multimodal_content))
|
268 |
+
|
269 |
+
# If we have an attachment that needs tool processing
|
270 |
+
elif attachment_info and attachment_info["status"] == "success" and attachment_info["handling"] == "tool":
|
271 |
+
# Add info about the file to the question
|
272 |
+
file_info = (
|
273 |
+
f"{question_text}\n\n"
|
274 |
+
f"Note: This task has an attached file that can be accessed at: {attachment_info['file_path']}\n"
|
275 |
+
f"File type: {attachment_info['content_type']}"
|
276 |
+
)
|
277 |
+
messages.append(HumanMessage(content=file_info))
|
278 |
+
|
279 |
+
# If no attachment or error with attachment
|
280 |
+
else:
|
281 |
+
messages.append(HumanMessage(content=question_text))
|
282 |
+
|
283 |
+
# Invoke the agent with the prepared messages
|
284 |
+
agent_answer = agent.invoke({"messages": messages},{"recursion_limit": 50})
|
285 |
+
submitted_answer = extract_final_answer(agent_answer['messages'][-1].content)
|
286 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
287 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
288 |
except Exception as e:
|
289 |
+
print(f"Error running agent on task {task_id}: {e}")
|
290 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
291 |
+
|
292 |
+
if not answers_payload:
|
293 |
+
print("Agent did not produce any answers to submit.")
|
294 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
295 |
+
|
296 |
+
# 4. Prepare Submission
|
297 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
298 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
299 |
+
print(status_update)
|
300 |
|
301 |
+
return submit(submission_data, results_log)
|
302 |
|
303 |
# --- Build Gradio Interface using Blocks ---
|
304 |
with gr.Blocks() as demo:
|
|
|
306 |
gr.Markdown(
|
307 |
"""
|
308 |
**Instructions:**
|
|
|
309 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
310 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
311 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
312 |
---
|
313 |
**Disclaimers:**
|
314 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
319 |
gr.LoginButton()
|
320 |
|
321 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
322 |
+
run_one_button = gr.Button("Run one question and submit")
|
323 |
|
324 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
325 |
# Removed max_rows=10 from DataFrame constructor
|
|
|
329 |
fn=run_and_submit_all,
|
330 |
outputs=[status_output, results_table]
|
331 |
)
|
332 |
+
run_one_button.click(
|
333 |
+
fn=run_and_submit_one,
|
334 |
+
outputs=[status_output, results_table]
|
335 |
+
)
|
336 |
|
337 |
if __name__ == "__main__":
|
338 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|