File size: 18,184 Bytes
17cde60
 
 
301fee0
17cde60
301fee0
 
17cde60
 
 
 
 
 
 
c94e335
301fee0
c94e335
 
afa07cf
 
c94e335
 
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301fee0
17cde60
301fee0
17cde60
301fee0
17cde60
301fee0
17cde60
301fee0
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd7447e
17cde60
 
 
fd7447e
17cde60
 
 
 
 
 
 
 
 
 
 
3a64875
17cde60
 
 
 
 
3a64875
17cde60
 
 
 
 
 
 
 
 
 
301fee0
 
 
 
 
 
 
 
 
 
 
17cde60
 
 
301fee0
17cde60
 
301fee0
17cde60
 
 
 
 
 
 
44d1a52
 
 
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
 
 
 
4546cca
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e1dab
17cde60
06e1dab
17cde60
 
 
06e1dab
 
17cde60
 
06e1dab
17cde60
06e1dab
17cde60
 
 
06e1dab
17cde60
 
 
 
 
83b3e3a
17cde60
 
06e1dab
 
 
 
 
 
 
 
 
 
 
 
17cde60
3a64875
17cde60
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
3a64875
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
 
 
 
5cd173e
 
 
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94e335
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
3a64875
17cde60
 
 
 
 
 
 
 
3a64875
17cde60
44d1a52
 
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e1dab
 
 
17cde60
 
3a64875
17cde60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e1dab
3a64875
 
bda0f5a
3a64875
17cde60
f120eee
 
17cde60
44d1a52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import gradio as gr
import re
import json
import numpy as np
import nltk
import stanza
from stanza.models.constituency.parse_tree import Tree
from transformers import AutoTokenizer, AutoModelForTokenClassification, TokenClassificationPipeline
from sentence_transformers import CrossEncoder
from autocorrect import Speller
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.nn.utils.rnn import pad_sequence

# ***************************** Load needed models *****************************
nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency')
pos_tokenizer = AutoTokenizer.from_pretrained("QCRI/bert-base-multilingual-cased-pos-english")
pos_model = AutoModelForTokenClassification.from_pretrained("QCRI/bert-base-multilingual-cased-pos-english")
#sentences_similarity_model = CrossEncoder('cross-encoder/stsb-roberta-base')
sentences_similarity_model = CrossEncoder('WillHeld/roberta-base-stsb')
nli_model = BertForSequenceClassification.from_pretrained("nouf-sst/bert-base-MultiNLI", use_auth_token="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")
nli_tokenizer = BertTokenizer.from_pretrained("nouf-sst/bert-base-MultiNLI", use_auth_token="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", do_lower_case=True)

# ***************************** TGRL Parsing *****************************

def parse_tgrl(file_obj):

  with open(file_obj.name, 'r') as f:
    tgrl_text = f.read()
    tgrl_text = tgrl_text.replace('\t', '')
    tgrl_text = tgrl_text.replace('\n', '')
    
  return tgrl_text

def extract_elements(tgrl_text):

  # Extract actors
  actors = re.findall("(?:.*?actor\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
  # Extract goals
  goals = re.findall("(?:.*?goal\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
  # Extract softGoals
  softGoals = re.findall("(?:.*?softGoal\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
  # Extract tasks
  tasks = re.findall("(?:.*?task\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)
  # Extract resources
  resources = re.findall("(?:.*?resource\s\S+\s?{\s?name\s?=\s?\")([A-Za-z\s;.,!?:-]*)(?:\")", tgrl_text)

  elements = {
    "actors": actors,
    "goals": goals,
    "softGoals": softGoals,
    "tasks": tasks,
    "resources": resources
  }

  # get elements per actor
  elements_per_actor = {}

  for goal in goals:
    corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(goal))
    corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
    if corresponding_actor not in elements_per_actor:
        elements_per_actor[corresponding_actor] = []
    elements_per_actor[corresponding_actor].append(goal)
  
  for softGoal in softGoals:
    corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(softGoal))
    corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
    if corresponding_actor not in elements_per_actor:
        elements_per_actor[corresponding_actor] = []
    elements_per_actor[corresponding_actor].append(softGoal)

  for task in tasks:
    corresponding_actor = tgrl_text.rfind('actor', 0, tgrl_text.index(task))
    corresponding_actor = re.split(' |{', tgrl_text[corresponding_actor:])[1]
    if corresponding_actor not in elements_per_actor:
        elements_per_actor[corresponding_actor] = []
    elements_per_actor[corresponding_actor].append(task)

  # get decomposed elements

  new_lines = tgrl_text
  decomposed_elements = {}

  main_elements = re.findall("\w+(?=\s+decomposedBy)", new_lines)

  for main_element in main_elements:
      
      sub_elements = []
      
      sub_element = (re.findall(main_element+"(?: decomposedBy )([A-Za-z\s]*)", new_lines)[0])
      sub_elements.append(sub_element)
      new_lines = new_lines.replace(sub_element+', ', '')
          
      temp = main_element + " decomposedBy "
      for idx, sub_element in enumerate(sub_elements):
          if idx+1 == len (sub_elements):
              temp = temp + sub_element + ";"
          else:
              temp = temp + sub_element + ", "
      
      while temp not in tgrl_text:
          
          sub_element = (re.findall(main_element+"(?: decomposedBy )([A-Za-z\s]*)", new_lines)[0])
          sub_elements.append(sub_element)
          new_lines = new_lines.replace(sub_element+', ', '')
          
          temp = main_element + " decomposedBy "
          for idx, sub_element in enumerate(sub_elements):
              if idx+1 == len (sub_elements):
                  temp = temp + sub_element + ";"
              else:
                  temp = temp + sub_element + ", "

      decomposed_elements[main_element] = sub_elements

      # Replace elements IDs with names
      new_decomposed_elements = {}

      for key, _ in decomposed_elements.items():
          
          new_key = re.findall("(?:"+key+"\s*{\s*name\s=\s\")([A-Za-z\s;.,!?:-]*)", tgrl_text)[0]
          new_values = []
          
          for element in decomposed_elements[key]:
              new_value = re.findall("(?:"+element+"\s*{\s*name\s=\s\")([A-Za-z\s;.,!?:-]*)", tgrl_text)[0]
              new_values.append(new_value)
          
          new_decomposed_elements[new_key] = new_values

  return elements, elements_per_actor, new_decomposed_elements

# ************************************************************************

# ************************* Bad Smells Detection *************************

# ########### Long Elements ###########
def get_long_elements(elements, size_threshold): # Using RegEx 

  long_elements = []

  for key, value in elements.items():
    for i in range(0, len(elements[key])):
        if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
            long_elements.append(elements[key][i])
  
  if long_elements:
    long_elements = "\n".join(long_elements)
    return "Long elements:\n" + long_elements
  else:
    return "Long elements:\nNone."
# #####################################

# ######### Complex Sentences #########
def is_complex_sentence(sentence):

  nlp = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency')
  doc = nlp(sentence)
  for sentence in doc.sentences:
      unique_constituent_labels = Tree.get_unique_constituent_labels(sentence.constituency)
      if 'SBAR' in unique_constituent_labels:
        return True
      else:
        return False

def get_complex_sentences(elements):

  complex_sentences = []
      
  for key, value in elements.items():
      for i in range(0, len(elements[key])):
          if is_complex_sentence(elements[key][i]):
              complex_sentences.append(elements[key][i])
              
  if complex_sentences:
    complex_sentences = "\n".join(complex_sentences)
    return "Complex sentences:\n" + complex_sentences
  else:
    return "Complex sentences:\nNone."

# #####################################
            
# ########## Punctuations ######### 
def get_punctuations(elements):

  punctuations = []

  for key, value in elements.items():
      for i in range(0, len(elements[key])):
          if len(re.findall("[^\s\w\d-]", elements[key][i])) > 0:
              punctuations.append(elements[key][i])

  if punctuations:
    punctuations = "\n".join(punctuations)
    return "Punctuations:\n" + punctuations
  else:
    return "Punctuations:\nNone."
# #################################

# ########## Incorrect Actor Syntax ##########
def find_non_NPs(sentences):

  pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)

  outputs = pipeline(sentences)

  Non_NPs = []

  for idx, output in enumerate(outputs):
    if output[0]['entity'].startswith('V'):
      Non_NPs.append(sentences[idx])
    
  return Non_NPs

def check_actor_syntax(actors):

  incorrect_actor_syntax = find_non_NPs(actors)
  
  if incorrect_actor_syntax:
    incorrect_actor_syntax = "\n".join(incorrect_actor_syntax)
    return "Incorrect Actors Syntax:\n" + incorrect_actor_syntax
  else:
    return "All actors are syntactically correct."
# ############################################

# ########## Incorrect Goal Syntax ###########
def check_goal_syntax(goals):

  incorrect_goal_syntax = find_non_NPs(goals)

  if incorrect_goal_syntax:
    incorrect_goal_syntax = "\n".join(incorrect_goal_syntax)
    return "Incorrect Goals Syntax:\n" + incorrect_goal_syntax
  else:
    return "All goals are syntactically correct."
# ############################################

# ########## Incorrect Softgoal Syntax ###########
def check_softgoal_syntax(softgoals):

  incorrect_softgoal_syntax = find_non_NPs(softgoals)

  if incorrect_softgoal_syntax:
    incorrect_softgoal_syntax = "\n".join(incorrect_softgoal_syntax)
    return "Incorrect Softgoals Syntax:\n" + incorrect_softgoal_syntax
  else:
    return "All softgoal are syntactically correct."
# ############################################

# ########## Incorrect Task Syntax ###########
def find_NPs(sentences):

  pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer)

  outputs = pipeline(sentences)

  NPs = []
    
  for idx, output in enumerate(outputs):
    if not output[0]['entity'].startswith('V'):
      NPs.append(sentences[idx])
    
  return NPs

def check_task_syntax(tasks):

  incorrect_task_syntax = find_NPs(tasks)

  if incorrect_task_syntax:
    incorrect_task_syntax = "\n".join(incorrect_task_syntax)
    return "Incorrect Tasks Syntax:\n" + incorrect_task_syntax
  else:
    return "All tasks are syntactically correct."
# ############################################

# ########## Incorrect Resource Syntax ###########
def check_resource_syntax(resources):

  incorrect_resource_syntax = find_non_NPs(resources)

  if incorrect_resource_syntax:
    incorrect_resource_syntax = "\n".join(incorrect_resource_syntax)
    return "Incorrect Resources Syntax:\n" + incorrect_resource_syntax
  else:
    return "All resources are syntactically correct."
# ############################################

# ########## Similarity ###########
def get_similar_elements(elements_per_actor, similarity_threshold):

  # Prepare sentence pair array
  sentence_pairs = []

  for key, value in elements_per_actor.items():

      for i in range(len(elements_per_actor[key])):
          for j in range(i+1,len(elements_per_actor[key])):
              sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
  
  # Predict semantic similarity 
  semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)

  similar_elements = []
  for index, value in enumerate(sentence_pairs):
    if semantic_similarity_scores[index] > similarity_threshold:
      similar_elements.append(value)
      #semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]

  if similar_elements:
    similar_elements = [' and '.join(ele) for ele in similar_elements]
    similar_elements = "\n".join(similar_elements)
    return "The following elements are semantically similar:\n" + similar_elements
  else:
    return "There are no similar elements."

  return semantic_similarity
# #################################

# ########## Misspelling ###########
def get_misspelled_words(sentence):

  spell = Speller(only_replacements=True)
    
  misspelled= []
  
  for word in sentence.split():
      correct_word = spell(word)
      if word != correct_word:
          misspelled.append([word, correct_word])

  return misspelled

def check_spelling(elements):

  spelling_mistakes = []
  spelling_mistakes_string = ""

  for key, value in elements.items():
    for i in range(0, len(elements[key])):
        if get_misspelled_words(elements[key][i]):
            spelling_mistakes.append([elements[key][i], get_misspelled_words(elements[key][i])])
  
  for idx, element in enumerate(spelling_mistakes):
    for spelling_mistake in element[1]:
      temp = ' should be written as '.join(spelling_mistake) 
      spelling_mistakes_string = spelling_mistakes_string + "\n" + element[0] + ": " + temp 

  return spelling_mistakes_string
# ##################################

# ########## NLI ###########
def do_nli(premise, hypothesis):

  # Tokenization 
  token_ids = []
  seg_ids = []
  mask_ids = []

  premise_id = nli_tokenizer.encode(premise, add_special_tokens = False)
  hypothesis_id = nli_tokenizer.encode(hypothesis, add_special_tokens = False)
  pair_token_ids = [nli_tokenizer.cls_token_id] + premise_id + [nli_tokenizer.sep_token_id] + hypothesis_id + [nli_tokenizer.sep_token_id]
  premise_len = len(premise_id)
  hypothesis_len = len(hypothesis_id)

  segment_ids = torch.tensor([0] * (premise_len + 2) + [1] * (hypothesis_len + 1))  # sentence 0 and sentence 1
  attention_mask_ids = torch.tensor([1] * (premise_len + hypothesis_len + 3))  # mask padded values

  token_ids.append(torch.tensor(pair_token_ids))
  seg_ids.append(segment_ids)
  mask_ids.append(attention_mask_ids)

  # Forward pass 
  token_ids = pad_sequence(token_ids, batch_first=True)
  mask_ids = pad_sequence(mask_ids, batch_first=True)
  seg_ids = pad_sequence(seg_ids, batch_first=True)

  with torch.no_grad():
    output = nli_model(token_ids,
                  token_type_ids=seg_ids,
                  attention_mask=mask_ids)

  # Output predication 
  result = ""
  prediction = np.argmax(output.logits.cpu().numpy()).flatten().item()
  if prediction == 0:
    result = "Entailment"
    #print("Entailment")
  elif prediction == 1:
    result = "Contradiction"
    #print("Contradiction")
  elif prediction == 2:
    result = "Neutral"
    #print("Neutral")
  
  return result

# Entailment
def check_entailment(decomposed_elements):

  sentence_pairs = []
  non_matching_elements = []

  for key, value in decomposed_elements.items():
      #print(key, value)
      for i in decomposed_elements[key]:
          #print(key, i)
          sentence_pairs.append([key, i])
              
  for sentence_pair in sentence_pairs:
    result = do_nli(sentence_pair[0], sentence_pair[1])
    print(result)
    if result != "Entailment":
      non_matching_elements.append(sentence_pair)
  
  if non_matching_elements:
    non_matching_elements = [' and '.join(ele) for ele in non_matching_elements]
    non_matching_elements = "\n".join(non_matching_elements)
    return "The following elements are miss matching:\n" + non_matching_elements
  else:
    return "There are no miss matched elements."

  return result

# Contradiction
def check_contradiction(elements_per_actor):

  sentence_pairs = [] 
  contradicting_elements = []

  for key, value in elements_per_actor.items():

      for i in range(len(elements_per_actor[key])):
          for j in range(i+1,len(elements_per_actor[key])):
              sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
  
  #print(sentence_pairs)
  # Check contradiction
  for sentence_pair in sentence_pairs:
    result = do_nli(sentence_pair[0], sentence_pair[1])
    #print(result)
    if result == "Contradiction":
      contradicting_elements.append(sentence_pair)

  if contradicting_elements:
    contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
    contradicting_elements = "\n".join(contradicting_elements)
    return "The following elements are contradicting:\n" + contradicting_elements
  else:
    return "There are no contradicting elements."
# ##########################

# ************************* User Interface *************************

def identify_bad_smells(tgrl_file, selected_bad_smells, size_threshold, similarity_threshold):

  output = ""

  tgrl_text = parse_tgrl(tgrl_file)

  elements, elements_per_actor, decomposed_elements = extract_elements(tgrl_text)

  if 'Size' in selected_bad_smells:
    output = output + get_long_elements(elements, size_threshold) + "\n\n"

  if 'Complexity' in selected_bad_smells:
    output = output + get_complex_sentences(elements) + "\n\n"
  
  if 'Punctuations' in selected_bad_smells:
    output = output + get_punctuations(elements) + "\n\n"

  if 'Actors Syntax' in selected_bad_smells:
    output = output + check_actor_syntax(elements['actors']) + "\n\n"

  if 'Goals Syntax' in selected_bad_smells:
    output = output + check_goal_syntax(elements['goals']) + "\n\n"

  if 'Softgoals Syntax' in selected_bad_smells:
    output = output + check_softgoal_syntax(elements['softGoals']) + "\n\n"
  
  if 'Tasks Syntax' in selected_bad_smells:
    output = output + check_task_syntax(elements['tasks']) + "\n\n"
      
  if 'Resources Syntax' in selected_bad_smells:
    output = output + check_resource_syntax(elements['resources']) + "\n\n"

  if 'Similar Elements' in selected_bad_smells:
    output = output + get_similar_elements(elements_per_actor, similarity_threshold) + "\n\n"

  if 'Spelling Mistakes' in selected_bad_smells:
    output = output + check_spelling(elements) + "\n\n"

  if 'Goal-Subgoal Mismatch' in selected_bad_smells:
    output = output + check_entailment(decomposed_elements) + "\n\n"
  
  if 'Contradicting Elements' in selected_bad_smells:
    output = output + check_contradiction(elements_per_actor) + "\n\n"
    
  return output


interface = gr.Interface(fn = identify_bad_smells, 
                         inputs = [gr.File(label="TGRL File"),
                         gr.CheckboxGroup(["Size", "Complexity", "Punctuations", "Actors Syntax", "Goals Syntax", "Softgoals Syntax", "Tasks Syntax", "Resources Syntax", "Similar Elements", "Spelling Mistakes", "Goal-Subgoal Mismatch", "Contradicting Elements"],
                                           label="Which bad smells you want to detect?"),
                                   gr.Slider(label= "Size threshold", value = 5, minimum = 2, maximum = 10, step = 1),
                                   gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
                         outputs = [gr.Textbox(label= "Detected bad smells:")],
                         title = "TGRL Bad Smells Detection",
                         description = "Upload your .xgrl file and we will find the bad smells for you!",
                         theme = gr.themes.Soft())


interface.launch(inline = False)