import cv2 import numpy as np import tempfile import os from moviepy.video.io.VideoFileClip import VideoFileClip def detect_watermark_image(image, watermark_text="WATERMARK", threshold=0.7): """Detect if an image contains a DCT-domain watermark. Args: image: Input image watermark_text: The text to look for threshold: Detection sensitivity threshold Returns: tuple: (detected (bool), highlighted_image) """ # Ensure image dimensions are divisible by 8 for DCT h, w = image.shape[:2] h_new = (h // 8) * 8 w_new = (w // 8) * 8 image = cv2.resize(image, (w_new, h_new)) # Convert to YCrCb and extract Y channel ycrcb_image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb) y_channel, cr, cb = cv2.split(ycrcb_image) # Apply DCT dct_y = cv2.dct(np.float32(y_channel)) # Create known pattern for detection (systematic approach) h_blocks, w_blocks = dct_y.shape[0] // 8, dct_y.shape[1] // 8 detection_score = 0 max_location = None highlighted_image = image.copy() # Search for watermark pattern in blocks for y_block in range(h_blocks): for x_block in range(w_blocks): # Extract block block = dct_y[y_block*8:(y_block+1)*8, x_block*8:(x_block+1)*8] # Calculate variance to detect unusual patterns block_variance = np.var(block) # Check for anomalies in mid-frequency coefficients mid_freq_mean = np.mean(np.abs(block[2:6, 2:6])) # Simple detection heuristic if mid_freq_mean > 2.0 and block_variance > 100: detection_score += 1 max_location = (x_block*8, y_block*8) detected = detection_score > (h_blocks * w_blocks * 0.01) # Detect if >1% of blocks show watermark characteristics # Highlight detected region if found if detected and max_location: x, y = max_location font = cv2.FONT_HERSHEY_SIMPLEX text_size = cv2.getTextSize(watermark_text, font, 0.5, 1)[0] cv2.putText(highlighted_image, "WATERMARK DETECTED", (x, y + text_size[1]), font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) cv2.rectangle(highlighted_image, (x, y), (x + 64, y + 64), (0, 0, 255), 2) return detected, highlighted_image def detect_watermark_video(video_path, watermark_text="WATERMARK"): """Detect and highlight watermarks in a video file. Args: video_path (str): Path to the video file watermark_text (str): The watermark text to detect Returns: tuple: (detection_result (bool), output_video_path) """ try: # Process the video video = VideoFileClip(video_path) # Track detection across frames frame_count = 0 detected_frames = 0 def process_frame(frame): nonlocal frame_count, detected_frames frame_count += 1 detected, highlighted_frame = detect_watermark_image(frame, watermark_text) if detected: detected_frames += 1 return highlighted_frame processed_video = video.fl_image(process_frame) # Save the result to a temporary file temp_fd, output_path = tempfile.mkstemp(suffix=".mp4") os.close(temp_fd) # Close the file descriptor properly processed_video.write_videofile(output_path, codec='libx264') # Determine if watermark is detected in the video detection_result = detected_frames > (frame_count * 0.1) # >10% of frames have watermark return detection_result, output_path except Exception as e: print(f"Error detecting watermark in video: {e}") return False, None