import cv2 import numpy as np import random import tempfile import os # Ensure os is imported from moviepy.video.io.VideoFileClip import VideoFileClip def add_and_detect_watermark_video(video_path, watermark_text, num_watermarks=5): def add_watermark_to_frame(frame): watermark_positions = [] # Resize frame to be divisible by 8 (required for DCT) h, w, _ = frame.shape h_new = (h // 8) * 8 w_new = (w // 8) * 8 frame_resized = cv2.resize(frame, (w_new, h_new)) # Convert to YCrCb color space and extract Y channel ycrcb_image = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2YCrCb) y_channel, cr_channel, cb_channel = cv2.split(ycrcb_image) # Apply DCT to the Y channel dct_y = cv2.dct(np.float32(y_channel)) # Add watermark in the DCT domain rows, cols = dct_y.shape font = cv2.FONT_HERSHEY_SIMPLEX for _ in range(num_watermarks): text_size = cv2.getTextSize(watermark_text, font, 0.5, 1)[0] text_x = random.randint(0, cols - text_size[0]) text_y = random.randint(text_size[1], rows) watermark = np.zeros_like(dct_y) watermark = cv2.putText(watermark, watermark_text, (text_x, text_y), font, 0.5, (1, 1, 1), 1, cv2.LINE_AA) dct_y += watermark * 0.01 watermark_positions.append((text_x, text_y, text_size[0], text_size[1])) # Apply inverse DCT idct_y = cv2.idct(dct_y) # Merge channels and convert back to BGR ycrcb_image[:, :, 0] = idct_y watermarked_frame = cv2.cvtColor(ycrcb_image, cv2.COLOR_YCrCb2BGR) # Highlight watermarks for visualization watermark_highlight = watermarked_frame.copy() for (text_x, text_y, text_w, text_h) in watermark_positions: cv2.putText(watermark_highlight, watermark_text, (text_x, text_y), font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) cv2.rectangle(watermark_highlight, (text_x, text_y - text_h), (text_x + text_w, text_y), (0, 0, 255), 2) return watermarked_frame, watermark_highlight try: # Load video using MoviePy video = VideoFileClip(video_path) # Apply watermark to each frame video_with_watermark = video.fl_image(lambda frame: add_watermark_to_frame(frame)[0]) video_with_highlight = video.fl_image(lambda frame: add_watermark_to_frame(frame)[1]) # Create temporary files for output videos temp_fd, watermarked_video_path = tempfile.mkstemp(suffix=".mp4") temp_fd_highlight, highlight_video_path = tempfile.mkstemp(suffix=".mp4") os.close(temp_fd) os.close(temp_fd_highlight) # Write output videos video_with_watermark.write_videofile(watermarked_video_path, codec='libx264') video_with_highlight.write_videofile(highlight_video_path, codec='libx264') return watermarked_video_path, highlight_video_path except Exception as e: print(f"An error occurred: {e}") return None, None def detect_watermark_video(video_path, watermark_text="WATERMARK"): """Detect watermarks in a video file using OpenCV. Args: video_path (str): Path to the video file watermark_text (str): The watermark text to detect Returns: str: Path to the output video with detected watermarks """ try: # Use OpenCV directly for frame processing cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print(f"Error: Could not open video file {video_path}") return None # Get video properties width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) # Create output video file temp_fd, output_path = tempfile.mkstemp(suffix=".mp4") os.close(temp_fd) # Make sure to close the file descriptor # Initialize video writer fourcc = cv2.VideoWriter_fourcc(*'mp4v') # MP4 codec out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) # Track detection results frame_count = 0 detected_frames = 0 # Process each frame while True: ret, frame = cap.read() if not ret: break # Apply watermark detection to the frame frame_count += 1 # Detect watermark in current frame ycrcb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2YCrCb) y_channel, _, _ = cv2.split(ycrcb_image) # Check if frame dimensions are suitable for DCT h, w = y_channel.shape[:2] if h % 8 != 0 or w % 8 != 0: y_channel = cv2.resize(y_channel, ((w//8)*8, (h//8)*8)) dct_y = cv2.dct(np.float32(y_channel)) # Simple detection logic: look for anomalies in DCT coefficients mid_freq_sum = np.sum(np.abs(dct_y[2:6, 2:6])) detected = mid_freq_sum > 1000 # Threshold for detection if detected: detected_frames += 1 # Add visual indicator of detection frame = cv2.putText(frame, "WATERMARK DETECTED", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) out.write(frame) # Release resources cap.release() out.release() print(f"Processed {frame_count} frames, detected watermarks in {detected_frames} frames") return output_path except Exception as e: print(f"Error detecting watermark in video: {e}") return None