File size: 10,535 Bytes
0d0e451
 
 
 
 
 
7872317
 
ada67da
0d0e451
 
 
 
933cc55
0d0e451
 
 
 
ada67da
 
 
 
 
 
0d0e451
ada67da
0d0e451
ada67da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2c015
7872317
 
 
 
 
0d0e451
ada67da
0d0e451
 
 
 
 
 
 
 
ada67da
 
0d0e451
 
ada67da
 
 
 
 
 
 
 
0d0e451
 
 
 
 
ada67da
 
 
ba1da16
 
 
a64912b
ba1da16
 
 
ada67da
a64912b
ba1da16
a64912b
 
ba1da16
a64912b
 
ba1da16
 
a64912b
 
 
ba1da16
a64912b
 
 
 
 
 
 
 
ada67da
a64912b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1da16
 
 
 
 
 
ada67da
ba1da16
ada67da
 
ba1da16
ada67da
 
 
a64912b
ba1da16
 
ada67da
ba1da16
 
 
ada67da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0e451
ada67da
 
0d0e451
 
 
 
ada67da
0d0e451
ada67da
0d0e451
 
 
 
ada67da
 
 
 
 
 
 
0d0e451
 
 
933cc55
ada67da
 
 
 
0d0e451
ada67da
 
 
 
933cc55
ada67da
61d2ddd
ada67da
 
 
 
 
0d0e451
ada67da
0d0e451
 
 
 
ada67da
 
0d0e451
ada67da
 
0d0e451
ada67da
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import gradio as gr
import plotly.graph_objects as go
import sys
import torch
from huggingface_hub import hf_hub_download
import numpy as np
import random
# import argparse # Not strictly needed for weights_only=False, but good practice if dealing with argparse.Namespace

os.system("git clone https://github.com/luost26/diffusion-point-cloud")
sys.path.append("diffusion-point-cloud")

#Codes reference : https://github.com/luost26/diffusion-point-cloud

from models.vae_gaussian import *
from models.vae_flow import *

airplane_model_path = hf_hub_download("SerdarHelli/diffusion-point-cloud", filename="GEN_airplane.pt", revision="main")
# IMPORTANT: GEN_chair.pt must be present in the root directory where this script is run.
# This script does NOT download GEN_chair.pt. You need to manually place it there.
# The original repository (https://github.com/luost26/diffusion-point-cloud)
# mentions downloading checkpoints from Google Drive.
chair_model_path = "./GEN_chair.pt"

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# --- Start of PyTorch 2.6+ loading considerations ---
# Option 1: Set weights_only=False for each load (Simpler, if you trust the source)
# This is the approach being applied here as per previous interactions.

ckpt_airplane = torch.load(airplane_model_path, map_location=torch.device(device), weights_only=False)
ckpt_chair = torch.load(chair_model_path, map_location=torch.device(device), weights_only=False) # <--- FIX APPLIED HERE

# Option 2: For a more robust/secure approach with PyTorch 2.6+ (if you have many models)
# You could do this at the top, after importing torch and argparse:
# import argparse
# torch.serialization.add_safe_globals([argparse.Namespace])
# Then, the torch.load calls below would not need weights_only=False (they'd use the default weights_only=True)
# ckpt_airplane = torch.load(airplane_model_path, map_location=torch.device(device))
# ckpt_chair = torch.load(chair_model_path, map_location=torch.device(device))
# --- End of PyTorch 2.6+ loading considerations ---


def seed_all(seed):
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

def normalize_point_clouds(pcs, mode):
    if mode is None:
        return pcs
    for i in range(pcs.size(0)):
        pc = pcs[i]
        if mode == 'shape_unit':
            shift = pc.mean(dim=0).reshape(1, 3)
            scale = pc.flatten().std().reshape(1, 1)
        elif mode == 'shape_bbox':
            pc_max, _ = pc.max(dim=0, keepdim=True)  # (1, 3)
            pc_min, _ = pc.min(dim=0, keepdim=True)  # (1, 3)
            shift = ((pc_min + pc_max) / 2).view(1, 3)
            scale = (pc_max - pc_min).max().reshape(1, 1) / 2
        else: # Fallback if mode is not recognized, though your code doesn't use this branch with current inputs
            shift = 0
            scale = 1
        
        # Prevent division by zero or very small scale
        if scale < 1e-8:
            scale = torch.tensor(1.0).reshape(1,1)

        pc = (pc - shift) / scale
        pcs[i] = pc
    return pcs


def predict(Seed, ckpt):
    if Seed is None:
        Seed = 777
    seed_all(int(Seed))

    # --- MODIFICATION START ---
    actual_args = None
    if 'args' in ckpt and hasattr(ckpt['args'], 'model'):
        actual_args = ckpt['args']
        print("Using 'args' found in checkpoint.")
    else:
        # This fallback should ideally not be hit if 'args' is usually present
        print("Warning: 'args' not found or 'args.model' missing in checkpoint. Constructing mock_args.")
        # Define all necessary defaults if we have to construct from scratch
        default_model_type = 'gaussian'
        default_latent_dim = 128
        default_hyper = None
        default_residual = True
        default_flow_depth = 10
        default_flow_hidden_dim = 256
        default_num_points = 2048 # Default for sampling
        default_flexibility = 0.0  # Default for sampling

        actual_args = type('Args', (), {
            'model': ckpt.get('model', default_model_type),
            'latent_dim': ckpt.get('latent_dim', default_latent_dim),
            'hyper': ckpt.get('hyper', default_hyper),
            'residual': ckpt.get('residual', default_residual),
            'flow_depth': ckpt.get('flow_depth', default_flow_depth),
            'flow_hidden_dim': ckpt.get('flow_hidden_dim', default_flow_hidden_dim),
            'num_points': ckpt.get('num_points', default_num_points), # Try to get from ckpt top-level too
            'flexibility': ckpt.get('flexibility', default_flexibility) # Try to get from ckpt top-level too
        })()

    # Ensure essential attributes for sampling exist on actual_args, even if 'args' was found
    # These are parameters for the .sample() method, not necessarily model construction.
    # The original training args might not have included these if they were fixed in the sampling script.
    
    # Default values for sampling parameters if not present in actual_args
    default_num_points_sampling = 2048
    default_flexibility_sampling = 0.0

    if not hasattr(actual_args, 'num_points'):
        print(f"Attribute 'num_points' not found in actual_args. Setting default: {default_num_points_sampling}")
        setattr(actual_args, 'num_points', default_num_points_sampling)
    
    if not hasattr(actual_args, 'flexibility'):
        print(f"Attribute 'flexibility' not found in actual_args. Setting default: {default_flexibility_sampling}")
        setattr(actual_args, 'flexibility', default_flexibility_sampling)
        
    # Also ensure 'residual' is present if it's a Gaussian model, as it was an issue before
    # This is more for model construction, but good to double-check if the 'args' from ckpt might be incomplete
    if actual_args.model == 'gaussian' and not hasattr(actual_args, 'residual'):
        print(f"Attribute 'residual' not found in actual_args for Gaussian model. Setting default: True")
        setattr(actual_args, 'residual', True) # Default for GaussianVAE

    # --- MODIFICATION END ---

    if actual_args.model == 'gaussian':
        model = GaussianVAE(actual_args).to(device)
    elif actual_args.model == 'flow':
        model = FlowVAE(actual_args).to(device)
    else:
        raise ValueError(f"Unknown model type: {actual_args.model}")

    model.load_state_dict(ckpt['state_dict'])
    model.eval()

    gen_pcs = []
    with torch.no_grad():
        # Use the (potentially now augmented) actual_args for sampling
        z = torch.randn([1, actual_args.latent_dim]).to(device)
        x = model.sample(z, actual_args.num_points, flexibility=actual_args.flexibility)
        gen_pcs.append(x.detach().cpu())

    gen_pcs_tensor = torch.cat(gen_pcs, dim=0)[:1]
    gen_pcs_normalized = normalize_point_clouds(gen_pcs_tensor.clone(), mode="shape_bbox")

    return gen_pcs_normalized[0]
def generate(seed, value):
    if value == "Airplane":
        ckpt = ckpt_airplane
    elif value == "Chair":
        ckpt = ckpt_chair
    else:
        # Default case or handle error
        # For now, defaulting to airplane if 'value' is unexpected
        print(f"Warning: Unknown model type '{value}'. Defaulting to Airplane.")
        ckpt = ckpt_airplane

    colors = (238, 75, 43) # RGB tuple for plotly
    
    # Ensure seed is not None and is an int for the predict function
    current_seed = seed
    if current_seed is None:
        current_seed = random.randint(0, 2**16 -1) # Generate a random seed if None
    current_seed = int(current_seed)

    points = predict(current_seed, ckpt)
    # num_points = points.shape[0] # Not used directly in fig

    fig = go.Figure(
        data=[
            go.Scatter3d(
                x=points[:, 0], y=points[:, 1], z=points[:, 2],
                mode='markers',
                marker=dict(size=2, color=f'rgb({colors[0]},{colors[1]},{colors[2]})') # plotly expects rgb string
            )
        ],
        layout=dict(
            scene=dict(
                xaxis=dict(visible=True, title='X', backgroundcolor="rgb(230, 230,230)", gridcolor="white", zerolinecolor="white"),
                yaxis=dict(visible=True, title='Y', backgroundcolor="rgb(230, 230,230)", gridcolor="white", zerolinecolor="white"),
                zaxis=dict(visible=True, title='Z', backgroundcolor="rgb(230, 230,230)", gridcolor="white", zerolinecolor="white"),
                aspectmode='data' # Ensures proportional axes
            ),
            margin=dict(l=0, r=0, b=0, t=40), # Adjust margins
            title=f"Generated {value} (Seed: {current_seed})"
        )
    )
    return fig

markdown = f'''
# Diffusion Probabilistic Models for 3D Point Cloud Generation

[The space demo for the CVPR 2021 paper "Diffusion Probabilistic Models for 3D Point Cloud Generation".](https://arxiv.org/abs/2103.01458)

[For the official implementation.](https://github.com/luost26/diffusion-point-cloud)
### Future Work based on interest
- Adding new models for new type objects
- New Customization 

It is running on **{device.upper()}**

---
**Note:** The `GEN_chair.pt` file must be manually placed in the root directory for the "Chair" model to work.
It is not downloaded automatically by this script.
Check the [original repository's instructions](https://github.com/luost26/diffusion-point-cloud#pretrained-models) for downloading checkpoints.
---
'''
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    with gr.Column():
        with gr.Row():
            gr.Markdown(markdown)
        with gr.Row():
            seed_slider = gr.Slider(minimum=0, maximum=2**16 - 1, step=1, label='Seed (0 for random)', value=777) # Set initial value
            model_dropdown = gr.Dropdown(choices=["Airplane", "Chair"], label="Choose Model Type", value="Airplane") # Set initial value

        btn = gr.Button(value="Generate Point Cloud")
        point_cloud_plot = gr.Plot() # Changed variable name for clarity

    # demo.load(generate, [seed_slider, model_dropdown], point_cloud_plot) # demo.load usually runs on page load
    btn.click(generate, [seed_slider, model_dropdown], point_cloud_plot)

if __name__ == "__main__":
    # Ensure GEN_chair.pt exists if Chair model might be selected
    if not os.path.exists(chair_model_path):
        print(f"WARNING: Chair model checkpoint '{chair_model_path}' not found.")
        print(f"The 'Chair' option in the UI may not work unless this file is present.")
        print(f"Please download it from the original project repository and place it at '{chair_model_path}'.")
    
    demo.launch()