File size: 14,851 Bytes
0d0e451
 
 
 
 
 
7872317
 
df60a80
 
 
 
 
 
 
 
 
 
 
 
0d0e451
 
df60a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7872317
 
 
 
0d0e451
ada67da
0d0e451
 
 
 
 
 
 
 
df60a80
 
0d0e451
 
df60a80
 
 
ada67da
df60a80
 
 
 
0d0e451
 
df60a80
 
 
 
 
 
 
0d0e451
df60a80
ba1da16
df60a80
a64912b
df60a80
ba1da16
 
df60a80
 
 
 
 
 
ada67da
df60a80
 
 
 
 
 
 
 
 
 
 
 
 
a64912b
df60a80
 
 
 
 
 
 
 
 
a64912b
df60a80
 
a64912b
df60a80
 
 
a64912b
ba1da16
df60a80
 
ba1da16
df60a80
ba1da16
df60a80
ada67da
df60a80
ada67da
 
ba1da16
ada67da
df60a80
ada67da
 
df60a80
 
ada67da
df60a80
ba1da16
 
ada67da
 
 
df60a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0e451
 
933cc55
df60a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada67da
df60a80
 
 
 
0d0e451
df60a80
 
933cc55
df60a80
61d2ddd
df60a80
 
 
 
 
 
 
0d0e451
df60a80
 
0d0e451
 
df60a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada67da
df60a80
ada67da
df60a80
 
 
 
ada67da
df60a80
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import gradio as gr
import plotly.graph_objects as go
import sys
import torch
from huggingface_hub import hf_hub_download
import numpy as np
import random
import tempfile # For creating temporary files for download
import traceback # For detailed error logging

# --- Environment Setup ---
# Suppress TensorFlow oneDNN optimization messages if TensorFlow is inadvertently imported by a dependency
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Clone the repository only if the directory doesn't exist
if not os.path.exists("diffusion-point-cloud"):
    print("Cloning diffusion-point-cloud repository...")
    os.system("git clone https://github.com/luost26/diffusion-point-cloud")
else:
    print("diffusion-point-cloud repository already exists.")
sys.path.append("diffusion-point-cloud")

# --- Model Imports ---
try:
    from models.vae_gaussian import GaussianVAE
    from models.vae_flow import FlowVAE
except ImportError as e:
    print(f"CRITICAL Error importing models: {e}")
    print("Please ensure 'diffusion-point-cloud' directory is in sys.path and contains the model definitions.")
    sys.exit(1)

# --- Model Checkpoint Paths and Loading ---
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {DEVICE.upper()}")

MODEL_CONFIGS = {
    "Airplane": {
        "path_function": lambda: hf_hub_download("SerdarHelli/diffusion-point-cloud", filename="GEN_airplane.pt", revision="main"),
        "expected_model_type": "gaussian",
        "default_args": {
            'model': "gaussian", # Should match expected_model_type
            'latent_dim': 128,
            'hyper': None,
            'residual': True,
            'num_points': 2048, # For sampling
            # 'flexibility' will be taken from UI
        }
    },
    "Chair": {
        "path_function": lambda: "./GEN_chair.pt",
        "expected_model_type": "gaussian", # Assuming Gaussian for chair as well
        "default_args": {
            'model': "gaussian",
            'latent_dim': 128,
            'hyper': None,
            'residual': True,
            'num_points': 2048,
        }
    }
    # To add more models:
    # "YourModelName": {
    #     "path_function": lambda: "path/to/your/model.pt",
    #     "expected_model_type": "gaussian", # or "flow"
    #     "default_args": { ... } # Model-specific defaults
    # }
}


# Load checkpoints
LOADED_CHECKPOINTS = {}
for model_name, config in MODEL_CONFIGS.items():
    model_path = "" # Initialize for error message
    try:
        model_path = config["path_function"]()
        if model_name == "Chair" and not os.path.exists(model_path): # Specific check for local file
            print(f"WARNING: Checkpoint for {model_name} not found at '{model_path}'. This model will not be available.")
            LOADED_CHECKPOINTS[model_name] = None
            continue
        print(f"Loading checkpoint for {model_name} from '{model_path}'...")
        LOADED_CHECKPOINTS[model_name] = torch.load(model_path, map_location=torch.device(DEVICE), weights_only=False)
        print(f"Successfully loaded {model_name}.")
    except Exception as e:
        print(f"ERROR loading checkpoint for {model_name} from '{model_path}': {e}")
        LOADED_CHECKPOINTS[model_name] = None

# --- Helper Functions ---
def seed_all(seed):
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

def normalize_point_clouds(pcs, mode):
    if mode is None:
        return pcs
    for i in range(pcs.size(0)):
        pc = pcs[i]
        if mode == 'shape_unit':
            shift = pc.mean(dim=0).reshape(1, 3)
            scale = pc.flatten().std().reshape(1, 1)
        elif mode == 'shape_bbox':
            pc_max, _ = pc.max(dim=0, keepdim=True)
            pc_min, _ = pc.min(dim=0, keepdim=True)
            shift = ((pc_min + pc_max) / 2).view(1, 3)
            scale = (pc_max - pc_min).max().reshape(1, 1) / 2
        else: # Fallback
            shift = torch.zeros_like(pc.mean(dim=0).reshape(1, 3))
            scale = torch.ones_like(pc.flatten().std().reshape(1, 1))
        
        if scale.abs().item() < 1e-8: # Prevent division by zero or very small scale
            scale = torch.tensor(1.0, device=pc.device, dtype=pc.dtype).reshape(1, 1)
        
        pcs[i] = (pc - shift) / scale
    return pcs

# --- Core Prediction Logic ---
def predict(seed_val, selected_model_name, flexibility_val):
    seed_all(int(seed_val))
    
    ckpt = LOADED_CHECKPOINTS.get(selected_model_name)
    if ckpt is None:
        raise ValueError(f"Checkpoint for model '{selected_model_name}' not loaded or unavailable.")

    model_specific_defaults = MODEL_CONFIGS[selected_model_name].get("default_args", {})

    # --- Argument Handling for Model Instantiation and Sampling ---
    actual_args = None
    # Prioritize args from checkpoint if available and seems valid
    if 'args' in ckpt and hasattr(ckpt['args'], 'model'):
        actual_args = ckpt['args']
        print(f"Using 'args' found in checkpoint for {selected_model_name}.")
        # Augment with model-specific defaults if attributes are missing from ckpt['args']
        for key, default_value in model_specific_defaults.items():
            if not hasattr(actual_args, key):
                print(f"Checkpoint 'args' missing '{key}'. Setting default: {default_value}")
                setattr(actual_args, key, default_value)
    else:
        print(f"Warning: 'args' not found or 'args.model' missing in checkpoint for {selected_model_name}. Constructing mock_args from defaults.")
        # Fallback: construct args using model_specific_defaults, trying to get values from top-level of ckpt
        actual_args_dict = {}
        for key, default_value in model_specific_defaults.items():
            # Try to get from ckpt top-level first, then use the model-specific default
            actual_args_dict[key] = ckpt.get(key, default_value)
        actual_args = type('Args', (), actual_args_dict)()

    # Ensure essential attributes for model construction and sampling are present on actual_args
    # These might have been set by defaults above, but good to double check or enforce
    if not hasattr(actual_args, 'model'): # Critical
        raise ValueError("Resolved 'actual_args' is missing the 'model' attribute.")
    if not hasattr(actual_args, 'latent_dim'): setattr(actual_args, 'latent_dim', 128) # A common default

    if actual_args.model == 'gaussian':
        if not hasattr(actual_args, 'residual'):
            print("Setting default 'residual=True' for GaussianVAE.")
            setattr(actual_args, 'residual', True)
    elif actual_args.model == 'flow': # Parameters for FlowVAE
        if not hasattr(actual_args, 'flow_depth'): setattr(actual_args, 'flow_depth', 10)
        if not hasattr(actual_args, 'flow_hidden_dim'): setattr(actual_args, 'flow_hidden_dim', 256)
    
    # Sampling parameters
    if not hasattr(actual_args, 'num_points'):
        print("Setting default 'num_points=2048' for sampling.")
        setattr(actual_args, 'num_points', 2048)
    
    # Use flexibility from UI slider, this overrides any 'flexibility' in args
    setattr(actual_args, 'flexibility', flexibility_val)
    print(f"Using flexibility: {actual_args.flexibility} for sampling.")


    # --- Model Instantiation ---
    model = None
    if actual_args.model == 'gaussian':
        model = GaussianVAE(actual_args).to(DEVICE)
    elif actual_args.model == 'flow':
        model = FlowVAE(actual_args).to(DEVICE)
    else:
        raise ValueError(f"Unknown model type in args: '{actual_args.model}'. Expected 'gaussian' or 'flow'.")

    model.load_state_dict(ckpt['state_dict'])
    model.eval()

    # --- Point Cloud Generation ---
    gen_pcs = []
    with torch.no_grad():
        z = torch.randn([1, actual_args.latent_dim], device=DEVICE)
        x = model.sample(z, int(actual_args.num_points), flexibility=actual_args.flexibility)
        gen_pcs.append(x.detach().cpu())
    
    gen_pcs_tensor = torch.cat(gen_pcs, dim=0)[:1]
    gen_pcs_normalized = normalize_point_clouds(gen_pcs_tensor.clone(), mode="shape_bbox")

    return gen_pcs_normalized[0]


# --- Gradio Interface Function ---
def generate_gradio(seed, model_choice, flexibility, point_color_hex, marker_size):
    error_message = ""
    figure_plot = None
    download_file_path = None

    try:
        if seed is None:
            seed = random.randint(0, 2**16 - 1)
        seed = int(seed)

        if not model_choice:
            error_message = "Please choose a model type."
            # Return empty plot and no file if model not chosen
            return go.Figure(), None, error_message

        print(f"Generating {model_choice} with Seed: {seed}, Flex: {flexibility}, Color: {point_color_hex}, Size: {marker_size}")
        
        points = predict(seed, model_choice, flexibility)

        # Create Plotly figure
        figure_plot = go.Figure(
            data=[
                go.Scatter3d(
                    x=points[:, 0], y=points[:, 1], z=points[:, 2],
                    mode='markers',
                    marker=dict(size=marker_size, color=point_color_hex) # Use hex color directly
                )
            ],
            layout=dict(
                title=f"Generated {model_choice} (Seed: {seed}, Flex: {flexibility:.2f})",
                scene=dict(
                    xaxis=dict(visible=True, title='X', backgroundcolor="rgb(230,230,230)", gridcolor="white", zerolinecolor="white"),
                    yaxis=dict(visible=True, title='Y', backgroundcolor="rgb(230,230,230)", gridcolor="white", zerolinecolor="white"),
                    zaxis=dict(visible=True, title='Z', backgroundcolor="rgb(230,230,230)", gridcolor="white", zerolinecolor="white"),
                    aspectmode='data'
                ),
                margin=dict(l=0, r=0, b=0, t=40)
            )
        )

        # Prepare file for download
        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".xyz", encoding='utf-8') as tmp_file:
            for point in points:
                tmp_file.write(f"{point[0]:.6f} {point[1]:.6f} {point[2]:.6f}\n")
            download_file_path = tmp_file.name
        print(f"Point cloud saved for download at: {download_file_path}")

    except ValueError as ve:
        error_message = f"Configuration Error: {str(ve)}"
        print(error_message)
    except AttributeError as ae:
        error_message = f"Model Configuration Issue: {str(ae)}. The checkpoint might be missing expected parameters or they are incompatible."
        print(error_message)
    except Exception as e:
        error_message = f"An unexpected error occurred: {str(e)}"
        print(f"{error_message}\nFull Traceback:\n{traceback.format_exc()}")
        
    # Ensure we always return three values, even on error
    if figure_plot is None: figure_plot = go.Figure() # Empty plot on error
    return figure_plot, download_file_path, error_message

# --- Gradio UI Definition ---
available_models = [name for name, ckpt in LOADED_CHECKPOINTS.items() if ckpt is not None]
if not available_models:
    print("CRITICAL: No models were loaded successfully. The application may not function as expected.")

markdown_description = f'''
# Diffusion Probabilistic Models for 3D Point Cloud Generation

[CVPR 2021 Paper: "Diffusion Probabilistic Models for 3D Point Cloud Generation"](https://arxiv.org/abs/2103.01458) | [Official GitHub](https://github.com/luost26/diffusion-point-cloud)

This demo allows you to generate 3D point clouds using pre-trained models.
- Adjust the **Seed** for different random initializations.
- Choose a **Model Type** (e.g., Airplane, Chair).
- Control **Sampling Flexibility**: Lower values tend towards the mean shape, higher values increase diversity.
- Customize **Point Color** and **Marker Size**.

Running on: **{DEVICE.upper()}**
'''
if "Chair" in MODEL_CONFIGS and "Chair" not in available_models: # Check if Chair was intended but failed to load
    markdown_description += "\n\n**Warning:** The 'Chair' model checkpoint (`GEN_chair.pt`) was not found or failed to load. Please ensure it's in the root directory if you intend to use it."


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(markdown_description)
    
    with gr.Row():
        with gr.Column(scale=1): # Controls Column
            model_dropdown = gr.Dropdown(choices=available_models, label="Choose Model Type", value=available_models[0] if available_models else None)
            seed_slider = gr.Slider(minimum=0, maximum=2**16 - 1, step=1, label='Seed', value=777, randomize=True)
            flexibility_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.05, label='Sampling Flexibility', value=0.0)
            
            with gr.Row():
                color_picker = gr.ColorPicker(label="Point Color", value="#EE4B2B") # Default orange
                marker_size_slider = gr.Slider(minimum=1, maximum=10, step=1, label="Marker Size", value=2)
            
            generate_btn = gr.Button(value="Generate Point Cloud", variant="primary")
        
        with gr.Column(scale=2): # Output Column
            plot_output = gr.Plot(label="Generated Point Cloud")
            file_download_output = gr.File(label="Download Point Cloud (.xyz)")
            error_display = gr.Markdown("") # For displaying error messages

    generate_btn.click(
        fn=generate_gradio,
        inputs=[seed_slider, model_dropdown, flexibility_slider, color_picker, marker_size_slider],
        outputs=[plot_output, file_download_output, error_display]
    )
    
    if available_models:
        example_list = [
            [777, available_models[0], 0.0, "#EE4B2B", 2],
            [1234, available_models[0], 0.5, "#1E90FF", 3], # DodgerBlue
        ]
        if len(available_models) > 1: # If Chair (or another model) is available
            example_list.append([100, available_models[1], 0.2, "#32CD32", 2.5]) # LimeGreen
        
        gr.Examples(
            examples=example_list,
            inputs=[seed_slider, model_dropdown, flexibility_slider, color_picker, marker_size_slider],
            outputs=[plot_output, file_download_output, error_display],
            fn=generate_gradio,
            cache_examples=False, # Generation is fast enough, no need to cache potentially large plots
        )

# --- Application Launch ---
if __name__ == "__main__":
    if not available_models:
        print("No models available to run the Gradio demo. You might want to check checkpoint paths and errors above.")
        # Optionally, you could still launch a limited UI that just shows an error.
        # For now, we'll just print and let it potentially launch an empty UI if Gradio is set up.
    
    print("Launching Gradio demo...")
    demo.launch() # Add share=True if you want a public link when running locally