File size: 4,854 Bytes
ad33df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import json
from pathlib import Path
from unittest.mock import patch

from openai.types.create_embedding_response import CreateEmbeddingResponse

from kotaemon.base import Document
from kotaemon.embeddings import (
    AzureOpenAIEmbeddings,
    FastEmbedEmbeddings,
    LCCohereEmbeddings,
    LCHuggingFaceEmbeddings,
    OpenAIEmbeddings,
)

from .conftest import (
    skip_when_cohere_not_installed,
    skip_when_fastembed_not_installed,
    skip_when_sentence_bert_not_installed,
)

with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
    openai_embedding_batch = CreateEmbeddingResponse.model_validate(json.load(f))

with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
    openai_embedding = CreateEmbeddingResponse.model_validate(json.load(f))


def assert_embedding_result(output):
    assert isinstance(output, list)
    assert isinstance(output[0], Document)
    assert isinstance(output[0].embedding, list)
    assert isinstance(output[0].embedding[0], float)


@patch(
    "openai.resources.embeddings.Embeddings.create",
    side_effect=lambda *args, **kwargs: openai_embedding,
)
def test_azureopenai_embeddings_raw(openai_embedding_call):
    model = AzureOpenAIEmbeddings(
        azure_deployment="embedding-deployment",
        azure_endpoint="https://test.openai.azure.com/",
        api_key="some-key",
        api_version="version",
    )
    output = model("Hello world")
    assert_embedding_result(output)
    openai_embedding_call.assert_called()


@patch(
    "openai.resources.embeddings.Embeddings.create",
    side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_lcazureopenai_embeddings_batch_raw(openai_embedding_call):
    model = AzureOpenAIEmbeddings(
        azure_deployment="embedding-deployment",
        azure_endpoint="https://test.openai.azure.com/",
        api_key="some-key",
        api_version="version",
    )
    output = model(["Hello world", "Goodbye world"])
    assert_embedding_result(output)
    openai_embedding_call.assert_called()


@patch(
    "openai.resources.embeddings.Embeddings.create",
    side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
    model = AzureOpenAIEmbeddings(
        azure_deployment="text-embedding-ada-002",
        azure_endpoint="https://test.openai.azure.com/",
        api_key="some-key",
        api_version="version",
    )
    output = model(["Hello world", "Goodbye world"])
    assert_embedding_result(output)
    openai_embedding_call.assert_called()


@patch(
    "openai.resources.embeddings.Embeddings.create",
    side_effect=lambda *args, **kwargs: openai_embedding,
)
def test_openai_embeddings_raw(openai_embedding_call):
    model = OpenAIEmbeddings(
        api_key="some-key",
        model="text-embedding-ada-002",
    )
    output = model("Hello world")
    assert_embedding_result(output)
    openai_embedding_call.assert_called()


@patch(
    "openai.resources.embeddings.Embeddings.create",
    side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_openai_embeddings_batch_raw(openai_embedding_call):
    model = OpenAIEmbeddings(
        api_key="some-key",
        model="text-embedding-ada-002",
    )
    output = model(["Hello world", "Goodbye world"])
    assert_embedding_result(output)
    openai_embedding_call.assert_called()


@skip_when_sentence_bert_not_installed
@patch(
    "sentence_transformers.SentenceTransformer",
    side_effect=lambda *args, **kwargs: None,
)
@patch(
    "langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_documents",
    side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
)
def test_lchuggingface_embeddings(
    langchain_huggingface_embedding_call, sentence_transformers_init
):
    model = LCHuggingFaceEmbeddings(
        model_name="intfloat/multilingual-e5-large",
        model_kwargs={"device": "cpu"},
        encode_kwargs={"normalize_embeddings": False},
    )

    output = model("Hello World")
    assert_embedding_result(output)
    sentence_transformers_init.assert_called()
    langchain_huggingface_embedding_call.assert_called()


@skip_when_cohere_not_installed
@patch(
    "langchain_cohere.CohereEmbeddings.embed_documents",
    side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
)
def test_lccohere_embeddings(langchain_cohere_embedding_call):
    model = LCCohereEmbeddings(
        model="embed-english-light-v2.0",
        cohere_api_key="my-api-key",
        user_agent="test",
    )

    output = model("Hello World")
    assert_embedding_result(output)
    langchain_cohere_embedding_call.assert_called()


@skip_when_fastembed_not_installed
def test_fastembed_embeddings():
    model = FastEmbedEmbeddings()
    output = model("Hello World")
    assert_embedding_result(output)