File size: 16,728 Bytes
ad33df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
<div align="center">

# kotaemon

An open-source clean & customizable RAG UI for chatting with your documents. Built with both end users and
developers in mind.

![Preview](https://raw.githubusercontent.com/Cinnamon/kotaemon/main/docs/images/preview-graph.png)

<a href="https://trendshift.io/repositories/11607" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11607" alt="Cinnamon%2Fkotaemon | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>

[Live Demo](https://huggingface.co/spaces/cin-model/kotaemon-demo) |
[Online Install](https://cinnamon.github.io/kotaemon/online_install/) |
[User Guide](https://cinnamon.github.io/kotaemon/) |
[Developer Guide](https://cinnamon.github.io/kotaemon/development/) |
[Feedback](https://github.com/Cinnamon/kotaemon/issues) |
[Contact](mailto:[email protected])

[![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/release/python-31013/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
<a href="https://github.com/Cinnamon/kotaemon/pkgs/container/kotaemon" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-kotaemon:latest-brightgreen" alt="docker pull ghcr.io/cinnamon/kotaemon:latest"></a>
![download](https://img.shields.io/github/downloads/Cinnamon/kotaemon/total.svg?label=downloads&color=blue)
<a href='https://huggingface.co/spaces/cin-model/kotaemon-demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href="https://hellogithub.com/en/repository/d3141471a0244d5798bc654982b263eb" target="_blank"><img src="https://abroad.hellogithub.com/v1/widgets/recommend.svg?rid=d3141471a0244d5798bc654982b263eb&claim_uid=RLiD9UZ1rEHNaMf&theme=small" alt="Featured|HelloGitHub" /></a>

</div>

## Introduction

This project serves as a functional RAG UI for both end users who want to do QA on their
documents and developers who want to build their own RAG pipeline.
<br>

```yml
+----------------------------------------------------------------------------+
| End users: Those who use apps built with `kotaemon`.                       |
| (You use an app like the one in the demo above)                            |
|     +----------------------------------------------------------------+     |
|     | Developers: Those who built with `kotaemon`.                   |     |
|     | (You have `import kotaemon` somewhere in your project)         |     |
|     |     +----------------------------------------------------+     |     |
|     |     | Contributors: Those who make `kotaemon` better.    |     |     |
|     |     | (You make PR to this repo)                         |     |     |
|     |     +----------------------------------------------------+     |     |
|     +----------------------------------------------------------------+     |
+----------------------------------------------------------------------------+
```

### For end users

- **Clean & Minimalistic UI**: A user-friendly interface for RAG-based QA.
- **Support for Various LLMs**: Compatible with LLM API providers (OpenAI, AzureOpenAI, Cohere, etc.) and local LLMs (via `ollama` and `llama-cpp-python`).
- **Easy Installation**: Simple scripts to get you started quickly.

### For developers

- **Framework for RAG Pipelines**: Tools to build your own RAG-based document QA pipeline.
- **Customizable UI**: See your RAG pipeline in action with the provided UI, built with <a href='https://github.com/gradio-app/gradio'>Gradio <img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>.
- **Gradio Theme**: If you use Gradio for development, check out our theme here: [kotaemon-gradio-theme](https://github.com/lone17/kotaemon-gradio-theme).

## Key Features

- **Host your own document QA (RAG) web-UI**: Support multi-user login, organize your files in private/public collections, collaborate and share your favorite chat with others.

- **Organize your LLM & Embedding models**: Support both local LLMs & popular API providers (OpenAI, Azure, Ollama, Groq).

- **Hybrid RAG pipeline**: Sane default RAG pipeline with hybrid (full-text & vector) retriever and re-ranking to ensure best retrieval quality.

- **Multi-modal QA support**: Perform Question Answering on multiple documents with figures and tables support. Support multi-modal document parsing (selectable options on UI).

- **Advanced citations with document preview**: By default the system will provide detailed citations to ensure the correctness of LLM answers. View your citations (incl. relevant score) directly in the _in-browser PDF viewer_ with highlights. Warning when retrieval pipeline return low relevant articles.

- **Support complex reasoning methods**: Use question decomposition to answer your complex/multi-hop question. Support agent-based reasoning with `ReAct`, `ReWOO` and other agents.

- **Configurable settings UI**: You can adjust most important aspects of retrieval & generation process on the UI (incl. prompts).

- **Extensible**: Being built on Gradio, you are free to customize or add any UI elements as you like. Also, we aim to support multiple strategies for document indexing & retrieval. `GraphRAG` indexing pipeline is provided as an example.

![Preview](https://raw.githubusercontent.com/Cinnamon/kotaemon/main/docs/images/preview.png)

## Installation

> If you are not a developer and just want to use the app, please check out our easy-to-follow [User Guide](https://cinnamon.github.io/kotaemon/). Download the `.zip` file from the [latest release](https://github.com/Cinnamon/kotaemon/releases/latest) to get all the newest features and bug fixes.

### System requirements

1. [Python](https://www.python.org/downloads/) >= 3.10
2. [Docker](https://www.docker.com/): optional, if you [install with Docker](#with-docker-recommended)
3. [Unstructured](https://docs.unstructured.io/open-source/installation/full-installation#full-installation) if you want to process files other than `.pdf`, `.html`, `.mhtml`, and `.xlsx` documents. Installation steps differ depending on your operating system. Please visit the link and follow the specific instructions provided there.

### With Docker (recommended)

1. We support both `lite` & `full` version of Docker images. With `full`, the extra packages of `unstructured` will be installed as well, it can support additional file types (`.doc`, `.docx`, ...) but the cost is larger docker image size. For most users, the `lite` image should work well in most cases.

   - To use the `lite` version.

     ```bash
     docker run \
     -e GRADIO_SERVER_NAME=0.0.0.0 \
     -e GRADIO_SERVER_PORT=7860 \
     -p 7860:7860 -it --rm \
     ghcr.io/cinnamon/kotaemon:main-lite
     ```

   - To use the `full` version.

     ```bash
     docker run \
     -e GRADIO_SERVER_NAME=0.0.0.0 \
     -e GRADIO_SERVER_PORT=7860 \
     -p 7860:7860 -it --rm \
     ghcr.io/cinnamon/kotaemon:main-full
     ```

2. We currently support and test two platforms: `linux/amd64` and `linux/arm64` (for newer Mac). You can specify the platform by passing `--platform` in the `docker run` command. For example:

   ```bash
   # To run docker with platform linux/arm64
   docker run \
   -e GRADIO_SERVER_NAME=0.0.0.0 \
   -e GRADIO_SERVER_PORT=7860 \
   -p 7860:7860 -it --rm \
   --platform linux/arm64 \
   ghcr.io/cinnamon/kotaemon:main-lite
   ```

3. Once everything is set up correctly, you can go to `http://localhost:7860/` to access the WebUI.

4. We use [GHCR](https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry) to store docker images, all images can be found [here.](https://github.com/Cinnamon/kotaemon/pkgs/container/kotaemon)

### Without Docker

1. Clone and install required packages on a fresh python environment.

   ```shell
   # optional (setup env)
   conda create -n kotaemon python=3.10
   conda activate kotaemon

   # clone this repo
   git clone https://github.com/Cinnamon/kotaemon
   cd kotaemon

   pip install -e "libs/kotaemon[all]"
   pip install -e "libs/ktem"
   ```

2. Create a `.env` file in the root of this project. Use `.env.example` as a template

   The `.env` file is there to serve use cases where users want to pre-config the models before starting up the app (e.g. deploy the app on HF hub). The file will only be used to populate the db once upon the first run, it will no longer be used in consequent runs.

3. (Optional) To enable in-browser `PDF_JS` viewer, download [PDF_JS_DIST](https://github.com/mozilla/pdf.js/releases/download/v4.0.379/pdfjs-4.0.379-dist.zip) then extract it to `libs/ktem/ktem/assets/prebuilt`

<img src="https://raw.githubusercontent.com/Cinnamon/kotaemon/main/docs/images/pdf-viewer-setup.png" alt="pdf-setup" width="300">

4. Start the web server:

   ```shell
   python app.py
   ```

   - The app will be automatically launched in your browser.
   - Default username and password are both `admin`. You can set up additional users directly through the UI.

   ![Chat tab](https://raw.githubusercontent.com/Cinnamon/kotaemon/main/docs/images/chat-tab.png)

5. Check the `Resources` tab and `LLMs and Embeddings` and ensure that your `api_key` value is set correctly from your `.env` file. If it is not set, you can set it there.

### Setup GraphRAG

> [!NOTE]
> Official MS GraphRAG indexing only works with OpenAI or Ollama API.
> We recommend most users to use NanoGraphRAG implementation for straightforward integration with Kotaemon.

<details>

<summary>Setup Nano GRAPHRAG</summary>

- Install nano-GraphRAG: `pip install nano-graphrag`
- `nano-graphrag` install might introduce version conflicts, see [this issue](https://github.com/Cinnamon/kotaemon/issues/440)
  - To quickly fix: `pip uninstall hnswlib chroma-hnswlib && pip install chroma-hnswlib`
- Launch Kotaemon with `USE_NANO_GRAPHRAG=true` environment variable.
- Set your default LLM & Embedding models in Resources setting and it will be recognized automatically from NanoGraphRAG.

</details>

<details>

<summary>Setup LIGHTRAG</summary>

- Install LightRAG: `pip install git+https://github.com/HKUDS/LightRAG.git`
- `LightRAG` install might introduce version conflicts, see [this issue](https://github.com/Cinnamon/kotaemon/issues/440)
  - To quickly fix: `pip uninstall hnswlib chroma-hnswlib && pip install chroma-hnswlib`
- Launch Kotaemon with `USE_LIGHTRAG=true` environment variable.
- Set your default LLM & Embedding models in Resources setting and it will be recognized automatically from LightRAG.

</details>

<details>

<summary>Setup MS GRAPHRAG</summary>

- **Non-Docker Installation**: If you are not using Docker, install GraphRAG with the following command:

  ```shell
  pip install "graphrag<=0.3.6" future
  ```

- **Setting Up API KEY**: To use the GraphRAG retriever feature, ensure you set the `GRAPHRAG_API_KEY` environment variable. You can do this directly in your environment or by adding it to a `.env` file.
- **Using Local Models and Custom Settings**: If you want to use GraphRAG with local models (like `Ollama`) or customize the default LLM and other configurations, set the `USE_CUSTOMIZED_GRAPHRAG_SETTING` environment variable to true. Then, adjust your settings in the `settings.yaml.example` file.

</details>

### Setup Local Models (for local/private RAG)

See [Local model setup](docs/local_model.md).

### Customize your application

- By default, all application data is stored in the `./ktem_app_data` folder. You can back up or copy this folder to transfer your installation to a new machine.

- For advanced users or specific use cases, you can customize these files:

  - `flowsettings.py`
  - `.env`

#### `flowsettings.py`

This file contains the configuration of your application. You can use the example
[here](flowsettings.py) as the starting point.

<details>

<summary>Notable settings</summary>

```python
# setup your preferred document store (with full-text search capabilities)
KH_DOCSTORE=(Elasticsearch | LanceDB | SimpleFileDocumentStore)

# setup your preferred vectorstore (for vector-based search)
KH_VECTORSTORE=(ChromaDB | LanceDB | InMemory | Qdrant)

# Enable / disable multimodal QA
KH_REASONINGS_USE_MULTIMODAL=True

# Setup your new reasoning pipeline or modify existing one.
KH_REASONINGS = [
    "ktem.reasoning.simple.FullQAPipeline",
    "ktem.reasoning.simple.FullDecomposeQAPipeline",
    "ktem.reasoning.react.ReactAgentPipeline",
    "ktem.reasoning.rewoo.RewooAgentPipeline",
]
```

</details>

#### `.env`

This file provides another way to configure your models and credentials.

<details>

<summary>Configure model via the .env file</summary>

- Alternatively, you can configure the models via the `.env` file with the information needed to connect to the LLMs. This file is located in the folder of the application. If you don't see it, you can create one.

- Currently, the following providers are supported:

  - **OpenAI**

    In the `.env` file, set the `OPENAI_API_KEY` variable with your OpenAI API key in order
    to enable access to OpenAI's models. There are other variables that can be modified,
    please feel free to edit them to fit your case. Otherwise, the default parameter should
    work for most people.

    ```shell
    OPENAI_API_BASE=https://api.openai.com/v1
    OPENAI_API_KEY=<your OpenAI API key here>
    OPENAI_CHAT_MODEL=gpt-3.5-turbo
    OPENAI_EMBEDDINGS_MODEL=text-embedding-ada-002
    ```

  - **Azure OpenAI**

    For OpenAI models via Azure platform, you need to provide your Azure endpoint and API
    key. Your might also need to provide your developments' name for the chat model and the
    embedding model depending on how you set up Azure development.

    ```shell
    AZURE_OPENAI_ENDPOINT=
    AZURE_OPENAI_API_KEY=
    OPENAI_API_VERSION=2024-02-15-preview
    AZURE_OPENAI_CHAT_DEPLOYMENT=gpt-35-turbo
    AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT=text-embedding-ada-002
    ```

  - **Local Models**

    - Using `ollama` OpenAI compatible server:

      - Install [ollama](https://github.com/ollama/ollama) and start the application.

      - Pull your model, for example:

        ```shell
        ollama pull llama3.1:8b
        ollama pull nomic-embed-text
        ```

      - Set the model names on web UI and make it as default:

        ![Models](https://raw.githubusercontent.com/Cinnamon/kotaemon/main/docs/images/models.png)

    - Using `GGUF` with `llama-cpp-python`

      You can search and download a LLM to be ran locally from the [Hugging Face Hub](https://huggingface.co/models). Currently, these model formats are supported:

      - GGUF

        You should choose a model whose size is less than your device's memory and should leave
        about 2 GB. For example, if you have 16 GB of RAM in total, of which 12 GB is available,
        then you should choose a model that takes up at most 10 GB of RAM. Bigger models tend to
        give better generation but also take more processing time.

        Here are some recommendations and their size in memory:

      - [Qwen1.5-1.8B-Chat-GGUF](https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf?download=true): around 2 GB

        Add a new LlamaCpp model with the provided model name on the web UI.

  </details>

### Adding your own RAG pipeline

#### Custom Reasoning Pipeline

1. Check the default pipeline implementation in [here](libs/ktem/ktem/reasoning/simple.py). You can make quick adjustment to how the default QA pipeline work.
2. Add new `.py` implementation in `libs/ktem/ktem/reasoning/` and later include it in `flowssettings` to enable it on the UI.

#### Custom Indexing Pipeline

- Check sample implementation in `libs/ktem/ktem/index/file/graph`

> (more instruction WIP).

## Star History

<a href="https://star-history.com/#Cinnamon/kotaemon&Date">
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Cinnamon/kotaemon&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Cinnamon/kotaemon&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Cinnamon/kotaemon&type=Date" />
 </picture>
</a>

## Contribution

Since our project is actively being developed, we greatly value your feedback and contributions. Please see our [Contributing Guide](https://github.com/Cinnamon/kotaemon/blob/main/CONTRIBUTING.md) to get started. Thank you to all our contributors!

<a href="https://github.com/Cinnamon/kotaemon/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=Cinnamon/kotaemon" />
</a>