renesis / libs /kotaemon /tests /test_composite.py
noumanjavaid's picture
Upload folder using huggingface_hub
ad33df7 verified
raw
history blame
5.22 kB
from copy import deepcopy
import pytest
from openai.types.chat.chat_completion import ChatCompletion
from kotaemon.llms import (
AzureChatOpenAI,
BasePromptComponent,
GatedBranchingPipeline,
GatedLinearPipeline,
SimpleBranchingPipeline,
SimpleLinearPipeline,
)
from kotaemon.parsers import RegexExtractor
_openai_chat_completion_response = ChatCompletion.parse_obj(
{
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
"object": "chat.completion",
"created": 1692338378,
"model": "gpt-35-turbo",
"system_fingerprint": None,
"choices": [
{
"index": 0,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": "This is a test 123",
"finish_reason": "length",
"logprobs": None,
},
"logprobs": None,
}
],
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
}
)
@pytest.fixture
def mock_llm():
return AzureChatOpenAI(
api_key="dummy",
api_version="2024-05-01-preview",
azure_deployment="gpt-4o",
azure_endpoint="https://test.openai.azure.com/",
)
@pytest.fixture
def mock_post_processor():
return RegexExtractor(pattern=r"\d+")
@pytest.fixture
def mock_prompt():
return BasePromptComponent(template="Test prompt {value}")
@pytest.fixture
def mock_simple_linear_pipeline(mock_prompt, mock_llm, mock_post_processor):
return SimpleLinearPipeline(
prompt=mock_prompt, llm=mock_llm, post_processor=mock_post_processor
)
@pytest.fixture
def mock_gated_linear_pipeline_positive(mock_prompt, mock_llm, mock_post_processor):
return GatedLinearPipeline(
prompt=mock_prompt,
llm=mock_llm,
post_processor=mock_post_processor,
condition=RegexExtractor(pattern="positive"),
)
@pytest.fixture
def mock_gated_linear_pipeline_negative(mock_prompt, mock_llm, mock_post_processor):
return GatedLinearPipeline(
prompt=mock_prompt,
llm=mock_llm,
post_processor=mock_post_processor,
condition=RegexExtractor(pattern="negative"),
)
def test_simple_linear_pipeline_run(mocker, mock_simple_linear_pipeline):
openai_mocker = mocker.patch(
"openai.resources.chat.completions.Completions.create",
return_value=_openai_chat_completion_response,
)
result = mock_simple_linear_pipeline(value="abc")
assert result.text == "123"
assert openai_mocker.call_count == 1
def test_gated_linear_pipeline_run_positive(
mocker, mock_gated_linear_pipeline_positive
):
openai_mocker = mocker.patch(
"openai.resources.chat.completions.Completions.create",
return_value=_openai_chat_completion_response,
)
result = mock_gated_linear_pipeline_positive(
value="abc", condition_text="positive condition"
)
assert result.text == "123"
assert openai_mocker.call_count == 1
def test_gated_linear_pipeline_run_negative(
mocker, mock_gated_linear_pipeline_positive
):
openai_mocker = mocker.patch(
"openai.resources.chat.completions.Completions.create",
return_value=_openai_chat_completion_response,
)
result = mock_gated_linear_pipeline_positive(
value="abc", condition_text="negative condition"
)
assert result.content is None
assert openai_mocker.call_count == 0
def test_simple_branching_pipeline_run(mocker, mock_simple_linear_pipeline):
response0: ChatCompletion = _openai_chat_completion_response
response1: ChatCompletion = deepcopy(_openai_chat_completion_response)
response1.choices[0].message.content = "a quick brown fox"
response2: ChatCompletion = deepcopy(_openai_chat_completion_response)
response2.choices[0].message.content = "jumps over the lazy dog 456"
openai_mocker = mocker.patch(
"openai.resources.chat.completions.Completions.create",
side_effect=[response0, response1, response2],
)
pipeline = SimpleBranchingPipeline()
for _ in range(3):
pipeline.add_branch(mock_simple_linear_pipeline)
result = pipeline.run(value="abc")
texts = [each.text for each in result]
assert len(result) == 3
assert texts == ["123", "", "456"]
assert openai_mocker.call_count == 3
def test_simple_gated_branching_pipeline_run(
mocker, mock_gated_linear_pipeline_positive, mock_gated_linear_pipeline_negative
):
response0: ChatCompletion = deepcopy(_openai_chat_completion_response)
response0.choices[0].message.content = "a quick brown fox"
openai_mocker = mocker.patch(
"openai.resources.chat.completions.Completions.create",
return_value=response0,
)
pipeline = GatedBranchingPipeline()
pipeline.add_branch(mock_gated_linear_pipeline_negative)
pipeline.add_branch(mock_gated_linear_pipeline_positive)
pipeline.add_branch(mock_gated_linear_pipeline_positive)
result = pipeline.run(value="abc", condition_text="positive condition")
assert result.text == ""
assert openai_mocker.call_count == 2