import streamlit as st import base64 from io import BytesIO import json from datetime import datetime import re st.set_page_config(page_title="ResumeBuilder Pro", layout="wide", initial_sidebar_state="collapsed") if "resume_data" not in st.session_state: st.session_state.resume_data = { "fullName": "Alexander Johnson", "title": "Senior Frontend Developer", "email": "alex.johnson@example.com", "phone": "(555) 123-4567", "location": "San Francisco, CA", "summary": "Experienced frontend developer with 6+ years specializing in React and modern JavaScript frameworks. Passionate about creating intuitive user interfaces and optimizing web performance.", "experience": [ { "id": 1, "company": "Tech Innovations Inc.", "position": "Senior Frontend Developer", "duration": "2019 - Present", "description": "Lead frontend development for enterprise SaaS platform. Improved performance by 40% through code optimization. Mentored junior developers." }, { "id": 2, "company": "WebSolutions Co.", "position": "Frontend Developer", "duration": "2017 - 2019", "description": "Developed responsive web applications using React. Collaborated with design team to implement UI/UX improvements." } ], "education": [ { "id": 1, "institution": "University of California, Berkeley", "degree": "B.S. Computer Science", "duration": "2013 - 2017" } ], "skills": ["React", "JavaScript", "TypeScript", "HTML/CSS", "Redux", "Next.js", "Tailwind CSS", "UI/UX Design"] } if "dark_mode" not in st.session_state: st.session_state.dark_mode = False if "show_preview" not in st.session_state: st.session_state.show_preview = True if "new_skill" not in st.session_state: st.session_state.new_skill = "" if "job_description" not in st.session_state: st.session_state.job_description = "" if "ai_suggestions" not in st.session_state: st.session_state.ai_suggestions = {} if "cover_letter" not in st.session_state: st.session_state.cover_letter = "" if "suggested_skills" not in st.session_state: st.session_state.suggested_skills = [] # Define a flag to check if API functionality is available if "gemini_available" not in st.session_state: st.session_state.gemini_available = False # Try to import Google Generative AI library, but make it optional try: import google.generativeai as genai st.session_state.gemini_import_success = True except ImportError: st.session_state.gemini_import_success = False # Apply custom styling based on dark/light mode def apply_custom_styling(): dark_mode = st.session_state.dark_mode primary_color = "#4F46E5" # Indigo if dark_mode: background_color = "#111827" text_color = "#F9FAFB" card_bg = "#1F2937" input_bg = "#374151" secondary_bg = "#1E3A8A" accent_light = "#818CF8" else: background_color = "#F9FAFB" text_color = "#111827" card_bg = "#FFFFFF" input_bg = "#F3F4F6" secondary_bg = "#EEF2FF" accent_light = "#C7D2FE" css = f""" """ st.markdown(css, unsafe_allow_html=True) # Function to download resume as JSON def download_resume_json(): json_str = json.dumps(st.session_state.resume_data, indent=2) b64 = base64.b64encode(json_str.encode()).decode() filename = f"resume_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" href = f'πŸ“„ Download JSON' return href # Function to create a placeholder for PDF export def download_resume_pdf(): # In a real app, you would generate an actual PDF here # For this example, we'll just return a placeholder button return '' # Initialize Gemini API (modified to handle missing API key gracefully) def initialize_gemini_api(): if not st.session_state.gemini_import_success: st.warning("Google Generative AI library not installed. Install with: `pip install google-generativeai`") return False try: # Get API key from session state first (from text input) api_key = st.session_state.get("api_key", "") # Only try to configure if API key is provided if api_key: genai.configure(api_key=api_key) # Test the API with a simple call to verify it works model = genai.GenerativeModel(model_name="gemini-1.5-pro") _ = model.generate_content("Hello") return True else: # No API key provided yet, not an error return False except Exception as e: st.error(f"Failed to initialize Gemini API: {str(e)}") return False # Function to get Gemini model response def get_gemini_response(prompt, temperature=0.7): if not st.session_state.gemini_available: st.warning("Gemini API not available. Please set up your API key.") return None try: # Create the model generation_config = { "temperature": temperature, "top_p": 0.95, "top_k": 64, "max_output_tokens": 8192, } model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, ) response = model.generate_content(prompt) return response.text except Exception as e: st.error(f"Error getting AI response: {str(e)}") return None # Main application header def render_header(): col1, col2 = st.columns([6, 4]) with col1: ai_badge = 'AI-Ready' if st.session_state.gemini_import_success else "" st.markdown(f'

πŸ“„ ResumeBuilder Pro {ai_badge}

', unsafe_allow_html=True) with col2: download_buttons = f"""
{download_resume_json()} {download_resume_pdf()}
""" st.markdown(download_buttons, unsafe_allow_html=True) # Hidden buttons that are triggered by the custom buttons above col2_1, col2_2 = st.columns(2) with col2_1: if st.button("Toggle Theme", key="baseButton-secondary", type="secondary"): st.session_state.dark_mode = not st.session_state.dark_mode st.rerun() with col2_2: if st.button("Toggle Preview", key="baseButton-primary"): st.session_state.show_preview = not st.session_state.show_preview st.rerun() # API Key Management - Improved to be more user-friendly and handle errors better def manage_api_key(): if "api_key" not in st.session_state: st.session_state.api_key = "" st.markdown('
', unsafe_allow_html=True) # Show different message if the generative AI library is not installed if not st.session_state.gemini_import_success: st.markdown("### πŸ€– Enable AI Features") st.markdown(""" To use AI features, you need to install the Google Generative AI library: ``` pip install google-generativeai ``` After installation, restart the app to access AI-powered resume enhancements. """) st.markdown('
', unsafe_allow_html=True) return # If library is installed but API key not set st.markdown("### πŸ”‘ Gemini API Setup") st.markdown("To use AI features, enter your Google Gemini API key below:") api_key = st.text_input("API Key", value=st.session_state.api_key, type="password", placeholder="Enter your Gemini API key here", key="api_key_input") col1, col2 = st.columns([1, 3]) with col1: if st.button("Save API Key", key="save_api_key_button"): st.session_state.api_key = api_key if initialize_gemini_api(): st.session_state.gemini_available = True st.success("API key saved and verified successfully!") else: if api_key: st.error("Invalid API key. Please check and try again.") else: st.warning("Please enter an API key to enable AI features.") with col2: st.markdown("Get your API key from [Google AI Studio](https://makersuite.google.com/app/apikey)") # Show what AI features are available if not st.session_state.gemini_available: st.markdown('
', unsafe_allow_html=True) st.markdown("### ✨ Unlock AI Features") st.markdown(""" By adding your API key, you'll unlock powerful AI features: - **Professional Summary Generator**: Create compelling summaries automatically - **Job Match Analysis**: Score your resume against job descriptions - **Skills Recommendations**: Get tailored skill suggestions for your role - **Experience Description Enhancement**: Make your work history more impactful - **Cover Letter Generator**: Create customized cover letters in seconds """) st.markdown('
', unsafe_allow_html=True) st.markdown('', unsafe_allow_html=True) # Generate AI summary function def generate_ai_summary(): data = st.session_state.resume_data prompt = f""" You are an expert resume writer. Generate a compelling professional summary for a resume with these details: Name: {data['fullName']} Current Position: {data['title']} Skills: {', '.join(data['skills'])} Experience: {' '.join([f"{exp['position']} at {exp['company']} ({exp['duration']}): {exp['description']}" for exp in data['experience']])} Education: {' '.join([f"{edu['degree']} from {edu['institution']} ({edu['duration']})" for edu in data['education']])} Rules for writing the summary: 1. Keep it concise (3-4 sentences maximum) 2. Highlight key skills and accomplishments 3. Focus on value provided in past roles 4. Use active language and avoid clichΓ©s 5. Target it toward professional growth Write ONLY the summary. Don't include explanations or other text. """ with st.spinner("Generating professional summary..."): summary = get_gemini_response(prompt, temperature=0.7) if summary: # Clean up the response summary = summary.strip().replace('"', '') return summary return None # Job description analysis function def analyze_job_description(job_description): data = st.session_state.resume_data prompt = f""" You are an expert resume consultant. Analyze this job description and the candidate's resume to provide insights. JOB DESCRIPTION: {job_description} CANDIDATE RESUME: Name: {data['fullName']} Current Position: {data['title']} Skills: {', '.join(data['skills'])} Experience: {' '.join([f"{exp['position']} at {exp['company']} ({exp['duration']}): {exp['description']}" for exp in data['experience']])} Education: {' '.join([f"{edu['degree']} from {edu['institution']} ({edu['duration']})" for edu in data['education']])} Provide the following in JSON format: 1. "match_percentage": A numerical estimate (0-100) of how well the candidate's skills match the job requirements 2. "missing_skills": A list of 3-5 key skills mentioned in the job that are missing from the candidate's resume 3. "highlight_skills": A list of skills the candidate has that are particularly relevant to this job 4. "emphasis_suggestions": 2-3 specific parts of the candidate's experience that should be emphasized for this job 5. "improvement_tips": 2-3 brief suggestions to improve the resume for this specific job Return ONLY the JSON, formatted as follows: {{ "match_percentage": number, "missing_skills": [list of strings], "highlight_skills": [list of strings], "emphasis_suggestions": [list of strings], "improvement_tips": [list of strings] }} """ with st.spinner("Analyzing job description..."): analysis = get_gemini_response(prompt, temperature=0.2) if analysis: try: # Try to parse the entire response first try: return json.loads(analysis) except json.JSONDecodeError: # If direct parsing fails, try to extract JSON json_match = re.search(r'\{[\s\S]*\}', analysis) if json_match: json_str = json_match.group(0) return json.loads(json_str) # If still no valid JSON found, return None return None except Exception as e: st.error(f"Error parsing AI response: {str(e)}") st.write("Raw response:", analysis) return None return None # Generate cover letter function def generate_cover_letter(job_description): data = st.session_state.resume_data prompt = f""" You are an expert cover letter writer. Create a professional cover letter based on this person's resume and the job description. JOB DESCRIPTION: {job_description} CANDIDATE RESUME: Name: {data['fullName']} Current Position: {data['title']} Skills: {', '.join(data['skills'])} Experience: {' '.join([f"{exp['position']} at {exp['company']} ({exp['duration']}): {exp['description']}" for exp in data['experience']])} Education: {' '.join([f"{edu['degree']} from {edu['institution']} ({edu['duration']})" for edu in data['education']])} Rules for the cover letter: 1. Keep it concise (3-4 paragraphs) 2. Personalize it to the job description 3. Highlight relevant experience and skills 4. Use professional language but maintain a conversational tone 5. Include a strong opening and closing 6. Don't include the date or contact information Write ONLY the cover letter content. """ with st.spinner("Generating cover letter..."): cover_letter = get_gemini_response(prompt, temperature=0.7) if cover_letter: return cover_letter.strip() return None # Main application layout def main(): # Apply custom styling apply_custom_styling() # Create a container for the entire app with st.container(): # Render header render_header() # Create tabs tabs = st.tabs(["πŸ“ Resume Editor", "🎯 Job Match", "βœ‰οΈ Cover Letter"]) # Edit Resume Tab with tabs[0]: if st.session_state.show_preview: col1, col2 = st.columns([3, 4]) else: col1 = st.container() # Edit form in left column with col1: st.markdown('
', unsafe_allow_html=True) st.subheader("Personal Information") # Personal info fields st.session_state.resume_data["fullName"] = st.text_input("Full Name", value=st.session_state.resume_data["fullName"], key="fullname_input") st.session_state.resume_data["title"] = st.text_input("Professional Title", value=st.session_state.resume_data["title"], key="title_input") col1_1, col1_2 = st.columns(2) with col1_1: st.session_state.resume_data["email"] = st.text_input("Email", value=st.session_state.resume_data["email"], key="email_input") with col1_2: st.session_state.resume_data["phone"] = st.text_input("Phone", value=st.session_state.resume_data["phone"], key="phone_input") st.session_state.resume_data["location"] = st.text_input("Location", value=st.session_state.resume_data["location"], key="location_input") # Summary with AI assistance st.markdown("### Professional Summary") # Show AI button if API is available if st.session_state.gemini_available: sum_col1, sum_col2 = st.columns([5, 1]) with sum_col1: st.session_state.resume_data["summary"] = st.text_area( "Summary (Professional Overview)", value=st.session_state.resume_data["summary"], height=150, key="summary_input" ) with sum_col2: if st.button("✨ AI Generate", key="generate_summary"): summary = generate_ai_summary() if summary: st.session_state.resume_data["summary"] = summary st.rerun() else: st.session_state.resume_data["summary"] = st.text_area( "Summary (Professional Overview)", value=st.session_state.resume_data["summary"], height=150, key="summary_input_no_ai" ) st.markdown('
', unsafe_allow_html=True) # End of personal info card # Experience section st.markdown('
', unsafe_allow_html=True) st.subheader("Experience") # Create fields for each experience item for i, exp in enumerate(st.session_state.resume_data["experience"]): col_exp1, col_exp2, col_exp3 = st.columns([4, 4, 2]) with col_exp1: st.session_state.resume_data["experience"][i]["position"] = st.text_input( "Position/Title", value=exp["position"], key=f"position_{i}" ) with col_exp2: st.session_state.resume_data["experience"][i]["company"] = st.text_input( "Company", value=exp["company"], key=f"company_{i}" ) with col_exp3: st.session_state.resume_data["experience"][i]["duration"] = st.text_input( "Duration", value=exp["duration"], key=f"duration_{i}" ) # Description with AI enhancement option if st.session_state.gemini_available: desc_col1, desc_col2 = st.columns([5, 1]) with desc_col1: st.session_state.resume_data["experience"][i]["description"] = st.text_area( "Description", value=exp["description"], height=100, key=f"description_{i}" ) with desc_col2: if st.button("✨ Enhance", key=f"enhance_desc_{i}"): prompt = f""" You are an expert resume writer. Improve this job description to make it more impactful and professional: "{exp["description"]}" Guidelines: 1. Use strong action verbs 2. Quantify achievements where possible 3. Highlight skills and technologies used 4. Keep similar length but make it more impactful 5. Focus on results and contributions Return ONLY the improved description without quotes or explanations. """ enhanced_desc = get_gemini_response(prompt, temperature=0.7) if enhanced_desc: st.session_state.resume_data["experience"][i]["description"] = enhanced_desc.strip() st.rerun() else: st.session_state.resume_data["experience"][i]["description"] = st.text_area( "Description", value=exp["description"], height=100, key=f"description_no_ai_{i}" ) # Add buttons to remove this experience if st.button("πŸ—‘οΈ Remove this experience", key=f"remove_exp_{i}"): if i < len(st.session_state.resume_data["experience"]): st.session_state.resume_data["experience"].pop(i) st.rerun() st.markdown("
", unsafe_allow_html=True) # Add new experience button if st.button("βž• Add New Experience", key="add_new_experience"): # Find the highest ID and increment by 1 max_id = 0 for exp in st.session_state.resume_data["experience"]: if exp["id"] > max_id: max_id = exp["id"] st.session_state.resume_data["experience"].append({ "id": max_id + 1, "company": "New Company", "position": "Position Title", "duration": "Start - End Date", "description": "Describe your responsibilities and achievements." }) st.rerun() st.markdown('
', unsafe_allow_html=True) # End of experience card # Education section with st.container(): st.markdown('
', unsafe_allow_html=True) st.subheader("Education") # Create fields for each education item for i, edu in enumerate(st.session_state.resume_data["education"]): with st.container(): col_edu1, col_edu2, col_edu3 = st.columns([4, 4, 2], gap="small") with col_edu1: st.session_state.resume_data["education"][i]["institution"] = st.text_input( "Institution", value=edu["institution"], key=f"edit_institution_{i}" ) with col_edu2: st.session_state.resume_data["education"][i]["degree"] = st.text_input( "Degree", value=edu["degree"], key=f"edit_degree_{i}" ) with col_edu3: st.session_state.resume_data["education"][i]["duration"] = st.text_input( "Duration", value=edu["duration"], key=f"edit_education_duration_{i}" ) # Add button to remove this education if st.button("πŸ—‘οΈ Remove this education", key=f"remove_edu_{i}"): st.session_state.resume_data["education"].pop(i) st.rerun() st.markdown("
", unsafe_allow_html=True) # Add new education button if st.button("βž• Add New Education", key="add_new_education"): # Find the highest ID and increment by 1 max_id = 0 for edu in st.session_state.resume_data["education"]: if edu["id"] > max_id: max_id = edu["id"] st.session_state.resume_data["education"].append({ "id": max_id + 1, "institution": "University/College Name", "degree": "Degree Name", "duration": "Start - End Date" }) st.rerun() st.markdown('
', unsafe_allow_html=True) # End of education card # Skills section with st.container(): st.markdown('
', unsafe_allow_html=True) st.subheader("Skills") # Display current skills as tags with remove option with st.container(): st.markdown('
', unsafe_allow_html=True) for i, skill in enumerate(st.session_state.resume_data["skills"]): st.markdown( f'{skill} ', unsafe_allow_html=True ) # Hidden button that will be triggered by the βœ• in the skill tag if st.button("βœ•", key=f"remove_skill_{i}", type="secondary"): st.session_state.resume_data["skills"].remove(skill) st.rerun() st.markdown('
', unsafe_allow_html=True) # Add new skill col_skill1, col_skill2 = st.columns([4, 1]) with col_skill1: new_skill = st.text_input("Add Skill", value=st.session_state.new_skill, key="new_skill_input") st.session_state.new_skill = new_skill with col_skill2: if st.button("Add", key="add_skill_button") and st.session_state.new_skill.strip(): if st.session_state.new_skill not in st.session_state.resume_data["skills"]: st.session_state.resume_data["skills"].append(st.session_state.new_skill) st.session_state.new_skill = "" st.rerun() # AI skill suggestions if API is available if st.session_state.gemini_available: if st.button("✨ Suggest relevant skills", key="suggest_skills_section1"): with st.spinner("Generating skill suggestions..."): # Create prompt using current resume data prompt = f""" You are a career advisor. Based on this person's profile, suggest 5-7 relevant technical skills they might want to add to their resume. Current professional title: {st.session_state.resume_data["title"]} Current skills: {', '.join(st.session_state.resume_data["skills"])} Experience: {' '.join([f"{exp['position']} at {exp['company']}: {exp['description']}" for exp in st.session_state.resume_data["experience"]])} Return ONLY a Python list of strings with the skill names, like this: ["Skill 1", "Skill 2", "Skill 3", "Skill 4", "Skill 5"] Suggest only skills that are NOT already listed. Focus on technical and professional skills relevant to their field. """ skills_response = get_gemini_response(prompt, temperature=0.2) if skills_response: try: # Improved parsing of AI response - more robust handling # First try to find a list pattern in the response list_pattern = re.search(r'\[.*?\]', skills_response, re.DOTALL) if list_pattern: list_str = list_pattern.group(0) # Try to safely parse the list try: suggested_skills = json.loads(list_str) if isinstance(suggested_skills, list): # Filter out skills they already have st.session_state.suggested_skills = [s for s in suggested_skills if s not in st.session_state.resume_data["skills"]] else: st.error("AI response was not in the expected format. Please try again.") except json.JSONDecodeError: # If JSON parsing fails, try a more lenient approach # Extract items that look like skills from the response skill_matches = re.findall(r'"([^"]+)"', list_str) if skill_matches: st.session_state.suggested_skills = [s for s in skill_matches if s not in st.session_state.resume_data["skills"]] else: st.error("Could not parse skills from AI response. Please try again.") else: # If no list pattern found, look for quoted strings that might be skills skill_matches = re.findall(r'"([^"]+)"', skills_response) if skill_matches: st.session_state.suggested_skills = [s for s in skill_matches if s not in st.session_state.resume_data["skills"]] else: st.error("Could not identify skills in AI response. Please try again.") except Exception as e: st.error(f"Error processing skill suggestions: {str(e)}") # Display suggested skills if any if st.session_state.suggested_skills: st.markdown('
', unsafe_allow_html=True) st.markdown("##### Suggested Skills:") for i, skill in enumerate(st.session_state.suggested_skills): st.markdown( f'{skill} ', unsafe_allow_html=True ) # Hidden button that will be triggered by the + in the skill tag if st.button("+", key=f"add_suggested_skill_{i}", type="secondary"): if skill not in st.session_state.resume_data["skills"]: st.session_state.resume_data["skills"].append(skill) st.session_state.suggested_skills.remove(skill) st.rerun() st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # End of skills card # Preview in right column (if enabled) if st.session_state.show_preview: if col2 is not None: with col2: st.markdown('
', unsafe_allow_html=True) # Header section with clean styling st.markdown('
', unsafe_allow_html=True) st.markdown(f'
{st.session_state.resume_data["fullName"]}
', unsafe_allow_html=True) st.markdown(f'
{st.session_state.resume_data["title"]}
', unsafe_allow_html=True) # Contact info with better spacing contact_info = f'
' contact_info += f'{st.session_state.resume_data["email"]}' contact_info += f'{st.session_state.resume_data["phone"]}' contact_info += f'{st.session_state.resume_data["location"]}' contact_info += f'
' st.markdown(contact_info, unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Summary st.markdown('
SUMMARY
', unsafe_allow_html=True) st.markdown(f'
{st.session_state.resume_data["summary"]}
', unsafe_allow_html=True) # Experience st.markdown('
EXPERIENCE
', unsafe_allow_html=True) for exp in st.session_state.resume_data["experience"]: st.markdown(f'
', unsafe_allow_html=True) st.markdown(f'
{exp["position"]}
', unsafe_allow_html=True) st.markdown(f'
{exp["company"]} | {exp["duration"]}
', unsafe_allow_html=True) st.markdown(f'
{exp["description"]}
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Education st.markdown('
EDUCATION
', unsafe_allow_html=True) for edu in st.session_state.resume_data["education"]: st.markdown(f'
', unsafe_allow_html=True) st.markdown(f'
{edu["institution"]}
', unsafe_allow_html=True) st.markdown(f'
{edu["degree"]} | {edu["duration"]}
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Skills st.markdown('
SKILLS
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) for skill in st.session_state.resume_data["skills"]: st.markdown(f'{skill}', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # End of resume preview container # Print button for resume st.markdown('
', unsafe_allow_html=True) st.markdown('', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Import resume section st.markdown('
', unsafe_allow_html=True) st.subheader("Import Resume") uploaded_file = st.file_uploader("Import Resume JSON", type=["json"], key="resume_uploader") if uploaded_file is not None: try: imported_data = json.loads(uploaded_file.getvalue().decode()) # Validate the imported data has the required fields required_fields = ["fullName", "title", "email", "phone", "location", "summary", "experience", "education", "skills"] if all(field in imported_data for field in required_fields): st.session_state.resume_data = imported_data st.success("Resume data imported successfully!") st.rerun() else: st.error("Invalid resume data format. Please upload a valid JSON file.") except Exception as e: st.error(f"Error importing data: {str(e)}") st.markdown('
', unsafe_allow_html=True) # End of import card # About section st.markdown('
', unsafe_allow_html=True) st.subheader("About ResumeBuilder Pro") st.markdown(""" **ResumeBuilder Pro** is a streamlined tool for creating, editing, and optimizing resumes. Features: - Create and edit professional resumes with a user-friendly interface - AI-powered suggestions to enhance your resume content (with Gemini API) - Match your resume against job descriptions - Generate customized cover letters - Export your resume in various formats Version 1.0.0 """) st.markdown('
', unsafe_allow_html=True) # End of about card # Job Match Tab with tabs[1]: st.markdown('
', unsafe_allow_html=True) st.subheader("Resume-Job Matching") if not st.session_state.gemini_available: manage_api_key() else: st.markdown(""" Analyze how well your resume matches a specific job description. Paste the job description below to get personalized recommendations. """) # Job description input st.session_state.job_description = st.text_area( "Paste the job description here", height=200, value=st.session_state.job_description, key="job_description_input" ) if st.button("πŸ” Analyze Match", key="analyze_match_button") and st.session_state.job_description: analysis = analyze_job_description(st.session_state.job_description) if analysis: st.session_state.ai_suggestions = analysis # Extract suggested skills for adding to resume if "missing_skills" in analysis: st.session_state.suggested_skills = analysis["missing_skills"] # Display analysis results if available if st.session_state.ai_suggestions and "match_percentage" in st.session_state.ai_suggestions: match_percentage = st.session_state.ai_suggestions["match_percentage"] st.markdown(f"### Resume Match: {match_percentage}%") # Match percentage meter st.markdown(f'
', unsafe_allow_html=True) # Missing skills if "missing_skills" in st.session_state.ai_suggestions and st.session_state.ai_suggestions["missing_skills"]: st.markdown('
', unsafe_allow_html=True) st.markdown("#### Missing Skills") st.markdown("Consider adding these skills to your resume:") for skill in st.session_state.ai_suggestions["missing_skills"]: skill_hash = hash(skill) st.markdown( f'{skill} ', unsafe_allow_html=True ) if st.button("+", key=f"add_missing_skill_{skill_hash}", type="secondary"): if skill not in st.session_state.resume_data["skills"]: st.session_state.resume_data["skills"].append(skill) st.rerun() st.markdown('
', unsafe_allow_html=True) # Highlight skills if "highlight_skills" in st.session_state.ai_suggestions and st.session_state.ai_suggestions["highlight_skills"]: st.markdown('
', unsafe_allow_html=True) st.markdown("#### Relevant Skills") st.markdown("These skills from your resume are particularly relevant:") for skill in st.session_state.ai_suggestions["highlight_skills"]: st.markdown(f'{skill}', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Emphasis suggestions if "emphasis_suggestions" in st.session_state.ai_suggestions and st.session_state.ai_suggestions["emphasis_suggestions"]: st.markdown('
', unsafe_allow_html=True) st.markdown("#### Emphasis Suggestions") st.markdown("Consider emphasizing these aspects of your experience:") for suggestion in st.session_state.ai_suggestions["emphasis_suggestions"]: st.markdown(f"- {suggestion}") st.markdown('
', unsafe_allow_html=True) # Improvement tips if "improvement_tips" in st.session_state.ai_suggestions and st.session_state.ai_suggestions["improvement_tips"]: st.markdown('
', unsafe_allow_html=True) st.markdown("#### Improvement Tips") for tip in st.session_state.ai_suggestions["improvement_tips"]: st.markdown(f"- {tip}") st.markdown('
', unsafe_allow_html=True) # Generate optimized summary button if st.button("✨ Generate Optimized Summary", key="generate_optimized_summary"): summary = generate_ai_summary() if summary: # Only update if summary was successfully generated st.session_state.resume_data["summary"] = summary st.success("Professional summary updated to better match the job description!") st.rerun() st.markdown('
', unsafe_allow_html=True) # End of job match card # Cover Letter Tab with tabs[2]: st.markdown('
', unsafe_allow_html=True) st.subheader("Cover Letter Generator") if not st.session_state.gemini_available: manage_api_key() else: st.markdown(""" Generate a customized cover letter based on your resume and a job description. Paste the job description below to create a tailored cover letter. """) # Job description input for cover letter job_desc_for_letter = st.text_area( "Paste the job description here", height=200, value=st.session_state.job_description, key="job_description_for_letter" ) if st.button("✨ Generate Cover Letter", key="generate_cover_letter") and job_desc_for_letter: cover_letter = generate_cover_letter(job_desc_for_letter) if cover_letter: st.session_state.cover_letter = cover_letter # Display and edit cover letter if st.session_state.cover_letter: st.markdown("### Your Cover Letter") st.session_state.cover_letter = st.text_area( "Edit your cover letter as needed", value=st.session_state.cover_letter, height=400, key="cover_letter_editor" ) # Display formatted cover letter st.markdown('
', unsafe_allow_html=True) st.markdown(f"

{st.session_state.cover_letter.replace(chr(10), '
')}

", unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Copy to clipboard button (note: this is a placeholder, as direct clipboard access requires JavaScript) st.markdown( f'', unsafe_allow_html=True ) st.markdown('
', unsafe_allow_html=True) # End of cover letter card # Entry point of the application if __name__ == "__main__": # Try to import the Gemini library try: import google.generativeai as genai ST_GEMINI_IMPORT_SUCCESS = True except ImportError: ST_GEMINI_IMPORT_SUCCESS = False # Initialize session state variables if they don't exist if "initialized" not in st.session_state: # General app state st.session_state.initialized = True st.session_state.dark_mode = True # Default to dark mode st.session_state.show_preview = True # Show preview by default # API and AI state st.session_state.gemini_import_success = ST_GEMINI_IMPORT_SUCCESS st.session_state.gemini_available = False st.session_state.api_key = "" # Resume data st.session_state.resume_data = { "fullName": "Alexander Johnson", "title": "Senior Frontend Developer", "email": "alex.johnson@example.com", "phone": "(555) 123-4567", "location": "San Francisco, CA", "summary": "Experienced frontend developer with 6+ years specializing in React and modern JavaScript frameworks. Passionate about creating intuitive user interfaces and optimizing web performance.", "experience": [ { "id": 1, "company": "Tech Innovations Inc.", "position": "Senior Frontend Developer", "duration": "2019 - Present", "description": "Lead frontend development for enterprise SaaS platform. Improved performance by 40% through code optimization. Mentored junior developers." }, { "id": 2, "company": "WebSolutions Co.", "position": "Frontend Developer", "duration": "2017 - 2019", "description": "Developed responsive web applications using React. Collaborated with design team to implement UI/UX improvements." } ], "education": [ { "id": 1, "institution": "University of California, Berkeley", "degree": "B.S. Computer Science", "duration": "2013 - 2017" } ], "skills": ["React", "JavaScript", "TypeScript", "HTML/CSS", "Redux", "Next.js", "Tailwind CSS", "UI/UX Design"] } st.session_state.new_skill = "" st.session_state.suggested_skills = [] # Job matching st.session_state.ai_suggestions = {} st.session_state.job_description = "" # Cover letter st.session_state.cover_letter = "" # Run the main application main()