Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,28 +7,8 @@ from transformers import AutoTokenizer, BertModel, BertForSequenceClassification
|
|
| 7 |
from sklearn import metrics
|
| 8 |
import streamlit as st
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
class BertClass(torch.nn.Module):
|
| 12 |
-
def __init__(self):
|
| 13 |
-
super(BertClass, self).__init__()
|
| 14 |
-
self.l1 = BertModel.from_pretrained(model_path)
|
| 15 |
-
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
| 16 |
-
self.classifier = torch.nn.Linear(768, 6)
|
| 17 |
-
|
| 18 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 19 |
-
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 20 |
-
hidden_state = output_1[0]
|
| 21 |
-
pooler = hidden_state[:, 0]
|
| 22 |
-
pooler = self.dropout(pooler)
|
| 23 |
-
output = self.classifier(pooler)
|
| 24 |
-
return output
|
| 25 |
-
|
| 26 |
-
# Define models to be used
|
| 27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
-
bert_path = "bert-base-uncased"
|
| 29 |
-
bert_tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
| 30 |
-
bert_model = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
|
| 31 |
-
tuned_model = model = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
| 32 |
|
| 33 |
# Read and format data.
|
| 34 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
|
@@ -42,12 +22,30 @@ tweet_df["labels"] = label_vector
|
|
| 42 |
|
| 43 |
# User selects model for front-end.
|
| 44 |
option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT"))
|
|
|
|
|
|
|
| 45 |
if option == "BERT":
|
| 46 |
-
tokenizer =
|
| 47 |
-
model =
|
| 48 |
else:
|
| 49 |
-
tokenizer =
|
| 50 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Dataset for loading tables into DataLoader
|
| 53 |
class ToxicityDataset(Dataset):
|
|
|
|
| 7 |
from sklearn import metrics
|
| 8 |
import streamlit as st
|
| 9 |
|
| 10 |
+
# Define Torch device. Enable CUDA if available.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Read and format data.
|
| 14 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
|
|
|
| 22 |
|
| 23 |
# User selects model for front-end.
|
| 24 |
option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT"))
|
| 25 |
+
|
| 26 |
+
bert_path = "bert-base-uncased"
|
| 27 |
if option == "BERT":
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
| 29 |
+
model = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
|
| 30 |
else:
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
| 32 |
+
model = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
| 33 |
+
|
| 34 |
+
# Have data for BertClass ready for our tuned model.
|
| 35 |
+
class BertClass(torch.nn.Module):
|
| 36 |
+
def __init__(self):
|
| 37 |
+
super(BertClass, self).__init__()
|
| 38 |
+
self.l1 = BertModel.from_pretrained(model_path)
|
| 39 |
+
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
| 40 |
+
self.classifier = torch.nn.Linear(768, 6)
|
| 41 |
+
|
| 42 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 43 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 44 |
+
hidden_state = output_1[0]
|
| 45 |
+
pooler = hidden_state[:, 0]
|
| 46 |
+
pooler = self.dropout(pooler)
|
| 47 |
+
output = self.classifier(pooler)
|
| 48 |
+
return output
|
| 49 |
|
| 50 |
# Dataset for loading tables into DataLoader
|
| 51 |
class ToxicityDataset(Dataset):
|